IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v100y2020i3d10.1007_s11069-019-03845-4.html
   My bibliography  Save this article

Modelling coincidence and dependence of flood hazard phenomena in a Probabilistic Flood Hazard Assessment (PFHA) framework: case study in Le Havre

Author

Listed:
  • Amine Ben Daoued

    (Sorbonne University, Université de Technologie de Compiègne)

  • Nassima Mouhous-Voyneau

    (Sorbonne University, Université de Technologie de Compiègne)

  • Yasser Hamdi

    (Institute for Radiological Protection and Nuclear Safety)

  • Claire-Marie Duluc

    (Institute for Radiological Protection and Nuclear Safety)

  • Philippe Sergent

    (Centre d’études et d’expertise sur les risques, l’environnement, la mobilité et l’aménagement (Cerema))

Abstract

Many coastal urban areas and many coastal facilities must be protected against pluvial and marine floods, as their location near the sea is necessary. As part of the development of a Probabilistic Flood Hazard Approach (PFHA), several flood phenomena have to be modelled at the same time (or with an offset time) to estimate the contribution of each one. Modelling the combination and the dependence of several flooding sources is a key issue in the context of a PFHA. As coastal zones in France are densely populated, marine flooding represents a natural hazard threatening the coastal populations and facilities in several areas along the shore. Indeed, marine flooding is the most important source of coastal lowlands inundations. It is mainly generated by storm action that makes sea level rise above the tide. Furthermore, when combined with rainfall, coastal flooding can be more consequent. While there are several approaches to analyse and characterize marine flooding hazard with either extreme sea levels or intense rainfall, only few studies combine these two phenomena in a PFHA framework. Thus this study aims to develop a method for the analysis of a combined action of rainfall and sea level. This analysis is performed on the city of Le Havre, a French urban city on the English Channel coast, as a case study. In this work, we have used deterministic materials for rainfall and sea level modelling and proposed a new approach for estimating the probabilities of flooding.

Suggested Citation

  • Amine Ben Daoued & Nassima Mouhous-Voyneau & Yasser Hamdi & Claire-Marie Duluc & Philippe Sergent, 2020. "Modelling coincidence and dependence of flood hazard phenomena in a Probabilistic Flood Hazard Assessment (PFHA) framework: case study in Le Havre," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(3), pages 1059-1088, February.
  • Handle: RePEc:spr:nathaz:v:100:y:2020:i:3:d:10.1007_s11069-019-03845-4
    DOI: 10.1007/s11069-019-03845-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-019-03845-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-019-03845-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Franck Mazas, 2019. "Extreme events: a framework for assessing natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(3), pages 823-848, September.
    2. Marsaglia, George & Tsang, Wai Wan & Wang, Jingbo, 2003. "Evaluating Kolmogorov's Distribution," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 8(i18).
    3. Abberger, Klaus, 2004. "A simple graphical method to explore tail-dependence in stock-return pairs," CoFE Discussion Papers 04/03, University of Konstanz, Center of Finance and Econometrics (CoFE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Warne, Anders, 2023. "DSGE model forecasting: rational expectations vs. adaptive learning," Working Paper Series 2768, European Central Bank.
    2. Fernández de Marcos Giménez de los Galanes, Alberto & García Portugués, Eduardo, 2022. "Data-driven stabilizations of goodness-of-fit tests," DES - Working Papers. Statistics and Econometrics. WS 35324, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Sloot Henrik, 2022. "Implementing Markovian models for extendible Marshall–Olkin distributions," Dependence Modeling, De Gruyter, vol. 10(1), pages 308-343, January.
    4. Tatjana Miljkovic & Saleem Shaik & Dragan Miljkovic, 2017. "Redefining standards for body mass index of the US population based on BRFSS data using mixtures," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(2), pages 197-211, January.
    5. Jos'e Miguel Flores-Contr'o, 2024. "The Gerber-Shiu Expected Discounted Penalty Function: An Application to Poverty Trapping," Papers 2402.11715, arXiv.org.
    6. Steland, Ansgar, 2020. "Testing and estimating change-points in the covariance matrix of a high-dimensional time series," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    7. Enrique Garcia Tejeda, 2022. "La concentracion espacial de los reportes de disparos al 911 en la Ciudad de Mexico: ¿Comportamiento racional en el uso de armas durante la pandemia Covid-19?," Sobre México. Revista de Economía, Sobre México. Temas en economía, vol. 3(5), pages 69-93.
    8. Carvalho, Luis, 2015. "An Improved Evaluation of Kolmogorovs Distribution," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 65(c03).
    9. Guillaume Coqueret, 2016. "Empirical properties of a heterogeneous agent model in large dimensions," Post-Print hal-02088097, HAL.
    10. Hui Xuan Tan & Ephrance Abu Ujum & Kwai Fatt Choong & Kuru Ratnavelu, 2015. "Impact analysis of domestic and international research collaborations: a Malaysian case study," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 885-904, January.
    11. Fernández-de-Marcos, Alberto & García-Portugués, Eduardo, 2023. "Data-driven stabilizations of goodness-of-fit tests," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    12. Vladimir Klimchenko & Andrei Torgashov & Yuri A. W. Shardt & Fan Yang, 2021. "Multi-Output Soft Sensor with a Multivariate Filter That Predicts Errors Applied to an Industrial Reactive Distillation Process," Mathematics, MDPI, vol. 9(16), pages 1-14, August.
    13. Steven E. Pav, 2014. "Bounds on Portfolio Quality," Papers 1409.5936, arXiv.org.
    14. Ghosh, Sayantan & Manimaran, P. & Panigrahi, Prasanta K., 2011. "Characterizing multi-scale self-similar behavior and non-statistical properties of fluctuations in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4304-4316.
    15. Nayara Luiz Pires & Daphne Heloisa de Freitas Muniz & Tiago Borges Kisaka & Nathan De Castro Soares Simplicio & Lilian Bortoluzzi & Jorge Enoch Furquim Werneck Lima & Eduardo Cyrino Oliveira-Filho, 2015. "Impacts of the Urbanization Process on Water Quality of Brazilian Savanna Rivers: The Case of Preto River in Formosa, Goiás State, Brazil," IJERPH, MDPI, vol. 12(9), pages 1-16, August.
    16. Guillaume Coqueret, 2017. "Empirical properties of a heterogeneous agent model in large dimensions," Post-Print hal-02000726, HAL.
    17. Song-Hee Kim & Ward Whitt, 2014. "Are Call Center and Hospital Arrivals Well Modeled by Nonhomogeneous Poisson Processes?," Manufacturing & Service Operations Management, INFORMS, vol. 16(3), pages 464-480, July.
    18. Ivan D. Haigh & Thomas Wahl, 2019. "Advances in extreme value analysis and application to natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(3), pages 819-822, September.
    19. Goldman, Matt & Kaplan, David M., 2018. "Comparing distributions by multiple testing across quantiles or CDF values," Journal of Econometrics, Elsevier, vol. 206(1), pages 143-166.
    20. M. Mehdi Bateni & Mario L. V. Martina & ·Marcello Arosio, 2022. "Multivariate return period for different types of flooding in city of Monza, Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 811-823, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:100:y:2020:i:3:d:10.1007_s11069-019-03845-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.