IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v73y2011i1p61-76.html
   My bibliography  Save this article

Almost sure central limit theorem for the products of U-statistics

Author

Listed:
  • Zuoxiang Peng
  • Zhongquan Tan
  • Saralees Nadarajah

Abstract

No abstract is available for this item.

Suggested Citation

  • Zuoxiang Peng & Zhongquan Tan & Saralees Nadarajah, 2011. "Almost sure central limit theorem for the products of U-statistics," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(1), pages 61-76, January.
  • Handle: RePEc:spr:metrik:v:73:y:2011:i:1:p:61-76
    DOI: 10.1007/s00184-009-0265-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00184-009-0265-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00184-009-0265-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Berkes, István & Csáki, Endre, 2001. "A universal result in almost sure central limit theory," Stochastic Processes and their Applications, Elsevier, vol. 94(1), pages 105-134, July.
    2. Berkes, István & Csáki, Endre & Horváth, Lajos, 1998. "Almost sure central limit theorems under minimal conditions," Statistics & Probability Letters, Elsevier, vol. 37(1), pages 67-76, January.
    3. Li, Deli & Tomkins, R. J., 1996. "Laws of the iterated logarithm for weighted sums of independent random variables," Statistics & Probability Letters, Elsevier, vol. 27(3), pages 247-254, April.
    4. Holzmann, Hajo & Koch, Susanne & Min, Aleksey, 2004. "Almost sure limit theorems for U-statistics," Statistics & Probability Letters, Elsevier, vol. 69(3), pages 261-269, September.
    5. Ibragimov, Ildar & Lifshits, Mikhail, 1998. "On the convergence of generalized moments in almost sure central limit theorem," Statistics & Probability Letters, Elsevier, vol. 40(4), pages 343-351, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panga, Zacarias & Pereira, Luísa, 2019. "On the almost sure convergence for the joint version of maxima and minima of stationary sequences," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bercu, B., 2004. "On the convergence of moments in the almost sure central limit theorem for martingales with statistical applications," Stochastic Processes and their Applications, Elsevier, vol. 111(1), pages 157-173, May.
    2. Berkes, István, 2001. "The law of large numbers with exceptional sets," Statistics & Probability Letters, Elsevier, vol. 55(4), pages 431-438, December.
    3. Fahrner, Ingo, 2000. "An extension of the almost sure max-limit theorem," Statistics & Probability Letters, Elsevier, vol. 49(1), pages 93-103, August.
    4. Zhicheng Chen & Hongyun Zhang & Xinsheng Liu, 2020. "Almost Sure Convergence for the Maximum and Minimum of Normal Vector Sequences," Mathematics, MDPI, vol. 8(4), pages 1-11, April.
    5. Bercu, Bernard & Nourdin, Ivan & Taqqu, Murad S., 2010. "Almost sure central limit theorems on the Wiener space," Stochastic Processes and their Applications, Elsevier, vol. 120(9), pages 1607-1628, August.
    6. Tabacu, Lucia & Ledbetter, Mark, 2019. "Change-point analysis using logarithmic quantile estimation," Statistics & Probability Letters, Elsevier, vol. 150(C), pages 94-100.
    7. Panga, Zacarias & Pereira, Luísa, 2019. "On the almost sure convergence for the joint version of maxima and minima of stationary sequences," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
    8. Xu, Feng & Wu, Qunying, 2017. "Almost sure central limit theorem for self-normalized partial sums of ρ−-mixing sequences," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 17-27.
    9. Berkes, István & Horváth, Lajos, 2001. "The logarithmic average of sample extremes is asymptotically normal," Stochastic Processes and their Applications, Elsevier, vol. 91(1), pages 77-98, January.
    10. Wu, Qunying, 2011. "Almost sure limit theorems for stable distributions," Statistics & Probability Letters, Elsevier, vol. 81(6), pages 662-672, June.
    11. Luísa Pereira & Zhongquan Tan, 2017. "Almost Sure Convergence for the Maximum of Nonstationary Random Fields," Journal of Theoretical Probability, Springer, vol. 30(3), pages 996-1013, September.
    12. Denker, Manfred & Zheng, Xiaofei, 2018. "On the local times of stationary processes with conditional local limit theorems," Stochastic Processes and their Applications, Elsevier, vol. 128(7), pages 2448-2462.
    13. Ibragimov, Ildar & Lifshits, Mikhail, 1998. "On the convergence of generalized moments in almost sure central limit theorem," Statistics & Probability Letters, Elsevier, vol. 40(4), pages 343-351, November.
    14. Giuliano, Rita & Macci, Claudio & Pacchiarotti, Barbara, 2019. "Large deviations for weighted means of random vectors defined in terms of suitable Lévy processes," Statistics & Probability Letters, Elsevier, vol. 150(C), pages 13-22.
    15. Li, Deli & Bhaskara Rao, M. & Tomkins, R. J., 2001. "The Law of the Iterated Logarithm and Central Limit Theorem for L-Statistics," Journal of Multivariate Analysis, Elsevier, vol. 78(2), pages 191-217, August.
    16. Li, Jingyu & Zhang, Yong, 2021. "An almost sure central limit theorem for the stochastic heat equation," Statistics & Probability Letters, Elsevier, vol. 177(C).
    17. Holzmann, Hajo & Koch, Susanne & Min, Aleksey, 2004. "Almost sure limit theorems for U-statistics," Statistics & Probability Letters, Elsevier, vol. 69(3), pages 261-269, September.
    18. István Fazekas & Alexey Chuprunov, 2007. "An Almost Sure Functional Limit Theorem for the Domain of Geometric Partial Attraction of Semistable Laws," Journal of Theoretical Probability, Springer, vol. 20(2), pages 339-353, June.
    19. M. Ahmad, 2014. "A $$U$$ -statistic approach for a high-dimensional two-sample mean testing problem under non-normality and Behrens–Fisher setting," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 33-61, February.
    20. Stadtmüller, U., 2002. "Almost sure versions of distributional limit theorems for certain order statistics," Statistics & Probability Letters, Elsevier, vol. 58(4), pages 413-426, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:73:y:2011:i:1:p:61-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.