IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v24y2022i3d10.1007_s11009-021-09867-5.html
   My bibliography  Save this article

Joint Reliability Function of Coherent Systems with Shared Heterogeneous Components

Author

Listed:
  • Somayeh Ashrafi

    (University of Isfahan)

  • Majid Asadi

    (University of Isfahan
    Institute for Research in Fundamental Sciences (IPM))

  • Jorge Navarro

    (University of Murcia)

Abstract

In this paper, we consider two coherent systems having shared components. We assume that in the two systems there are three different types of components; components of type one that just belong to the first system, components of type two that lie only in the second system and components of type three that are shared by the two systems. We use the concept of joint survival signature to assess the joint reliability function of the two systems. Using this concept, some representations for the joint reliability function of the system lifetimes are obtained under two different scenarios of component failures. In the first scenario, we assume that the components of the systems fail according to different counting processes such as non-homogeneous Poisson processes. In the second scenario, it is assumed that the component lifetimes of each type are exchangeable while the three types of component lifetimes can be independent or dependent. To illustrate the theoretical results, two systems with shared components are studied numerically and graphically.

Suggested Citation

  • Somayeh Ashrafi & Majid Asadi & Jorge Navarro, 2022. "Joint Reliability Function of Coherent Systems with Shared Heterogeneous Components," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1485-1502, September.
  • Handle: RePEc:spr:metcap:v:24:y:2022:i:3:d:10.1007_s11009-021-09867-5
    DOI: 10.1007/s11009-021-09867-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-021-09867-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-021-09867-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marichal, Jean-Luc & Mathonet, Pierre & Navarro, Jorge & Paroissin, Christian, 2017. "Joint signature of two or more systems with applications to multistate systems made up of two-state components," European Journal of Operational Research, Elsevier, vol. 263(2), pages 559-570.
    2. Zarezadeh, S. & Mohammadi, L. & Balakrishnan, N., 2018. "On the joint signature of several coherent systems with some shared components," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1092-1100.
    3. Huang, Xianzhen & Aslett, Louis J.M. & Coolen, Frank P.A., 2019. "Reliability analysis of general phased mission systems with a new survival signature," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 416-422.
    4. Jorge Navarro & Francisco J. Samaniego & N. Balakrishnan & Debasis Bhattacharya, 2008. "On the application and extension of system signatures in engineering reliability," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(4), pages 313-327, June.
    5. Francisco J. Samaniego, 2007. "System Signatures and their Applications in Engineering Reliability," International Series in Operations Research and Management Science, Springer, number 978-0-387-71797-5, September.
    6. Serkan Eryilmaz, 2017. "The concept of weak exchangeability and its applications," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(3), pages 259-271, April.
    7. Mariusz Bieniek & Marco Burkschat & Tomasz Rychlik, 2020. "Comparisons of the Expectations of System and Component Lifetimes in the Failure Dependent Proportional Hazard Model," Methodology and Computing in Applied Probability, Springer, vol. 22(1), pages 173-189, March.
    8. Serkan Eryilmaz, 2015. "Systems composed of two types of nonidentical and dependent components," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(5), pages 388-394, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He Yi & Narayanaswamy Balakrishnan & Xiang Li, 2023. "Multi-State Joint Survival Signature for Multi-State Systems with Shared Multi-State Components," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Xiaojun & Balakrishnan, N., 2023. "Non-parametric inference based on reliability life-test of non-identical coherent systems with application to warranty time," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    2. Tavangar, Mahdi & Hashemi, Marzieh, 2022. "Reliability and maintenance analysis of coherent systems subject to aging and environmental shocks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    3. Yi, He & Cui, Lirong & Balakrishnan, Narayanaswamy, 2021. "Computation of survival signatures for multi-state consecutive-k systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    4. He Yi & Narayanaswamy Balakrishnan & Lirong Cui, 2022. "On Dependent Multi-State Semi-Coherent Systems Based on Multi-State Joint Signature," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1717-1734, September.
    5. Jia, Xujie & Shen, Jingyuan & Xu, Fanqi & Ma, Ruihong & Song, Xueying, 2019. "Modular decomposition signature for systems with sequential failure effect," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 435-444.
    6. He Yi & Narayanaswamy Balakrishnan & Xiang Li, 2023. "Multi-State Joint Survival Signature for Multi-State Systems with Shared Multi-State Components," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-18, March.
    7. Qin, Jinlei & Coolen, Frank P.A., 2022. "Survival signature for reliability evaluation of a multi-state system with multi-state components," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    8. Eryilmaz, Serkan, 2020. "Age-based preventive maintenance for coherent systems with applications to consecutive-k-out-of-n and related systems," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    9. Coolen-Maturi, Tahani & Coolen, Frank P.A. & Balakrishnan, Narayanaswamy, 2021. "The joint survival signature of coherent systems with shared components," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    10. Hindolo George-Williams & Geng Feng & Frank PA Coolen & Michael Beer & Edoardo Patelli, 2019. "Extending the survival signature paradigm to complex systems with non-repairable dependent failures," Journal of Risk and Reliability, , vol. 233(4), pages 505-519, August.
    11. Yi, He & Balakrishnan, Narayanaswamy & Li, Xiang, 2024. "Joint reliability of linear consecutive k-type systems with shared components in a zigzag structure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    12. Burkschat, M. & Samaniego, F.J., 2018. "Dynamic IFR concepts for coherent systems," Statistics & Probability Letters, Elsevier, vol. 142(C), pages 1-7.
    13. M. Kelkin Nama & M. Asadi, 2014. "Stochastic Properties of Components in a Used Coherent System," Methodology and Computing in Applied Probability, Springer, vol. 16(3), pages 675-691, September.
    14. Markos V. Koutras & Ioannis S. Triantafyllou & Serkan Eryilmaz, 2016. "Stochastic Comparisons Between Lifetimes of Reliability Systems with Exchangeable Components," Methodology and Computing in Applied Probability, Springer, vol. 18(4), pages 1081-1095, December.
    15. A. Toomaj & M. Doostparast, 2016. "On the Kullback Leibler information for mixed systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(10), pages 2458-2465, July.
    16. Serkan Eryilmaz & Frank P.A. Coolen & Tahani Coolen‐Maturi, 2018. "Mean residual life of coherent systems consisting of multiple types of dependent components," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(1), pages 86-97, February.
    17. Jorge Navarro & Rafael Rubio, 2011. "A note on necessary and sufficient conditions for ordering properties of coherent systems with exchangeable components," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(5), pages 478-489, August.
    18. M. Kelkinnama & M. Asadi, 2019. "Stochastic and ageing properties of coherent systems with dependent identically distributed components," Statistical Papers, Springer, vol. 60(3), pages 805-821, June.
    19. Serkan Eryilmaz & Altan Tuncel, 2016. "Generalizing the survival signature to unrepairable homogeneous multi‐state systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(8), pages 593-599, December.
    20. Jingwen Lu & He Yi & Xiang Li & Narayanaswamy Balakrishnan, 2023. "Joint Reliability of Two Consecutive-(1, l) or (2, k)-out-of-(2, n): F Type Systems and Its Application in Smart Street Light Deployment," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-26, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:24:y:2022:i:3:d:10.1007_s11009-021-09867-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.