IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v23y2021i3d10.1007_s11009-020-09804-y.html
   My bibliography  Save this article

Asymptotic Results for the Absorption Time of Telegraph Processes with Elastic Boundary at the Origin

Author

Listed:
  • Claudio Macci

    (Università di Roma Tor Vergata)

  • Barbara Martinucci

    (Università degli Studi di Salerno)

  • Enrica Pirozzi

    (Università di Napoli Federico II)

Abstract

We consider a telegraph process with elastic boundary at the origin studied recently in the literature (see e.g. Di Crescenzo et al. (Methodol Comput Appl Probab 20:333–352 2018)). It is a particular random motion with finite velocity which starts at x ≥ 0, and its dynamics is determined by upward and downward switching rates λ and μ, with λ > μ, and an absorption probability (at the origin) α ∈ (0,1]. Our aim is to study the asymptotic behavior of the absorption time at the origin with respect to two different scalings: x → ∞ $x\to \infty $ in the first case; μ → ∞ $\mu \to \infty $ , with λ =β μ for some β > 1 and x > 0, in the second case. We prove several large and moderate deviation results. We also present numerical estimates of β based on an asymptotic Normality result for the case of the second scaling.

Suggested Citation

  • Claudio Macci & Barbara Martinucci & Enrica Pirozzi, 2021. "Asymptotic Results for the Absorption Time of Telegraph Processes with Elastic Boundary at the Origin," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 1077-1096, September.
  • Handle: RePEc:spr:metcap:v:23:y:2021:i:3:d:10.1007_s11009-020-09804-y
    DOI: 10.1007/s11009-020-09804-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-020-09804-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-020-09804-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antonio Di Crescenzo & Shelemyahu Zacks, 2015. "Probability Law and Flow Function of Brownian Motion Driven by a Generalized Telegraph Process," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 761-780, September.
    2. Macci, Claudio, 2016. "Large deviations for some non-standard telegraph processes," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 119-127.
    3. Antonio Di Crescenzo & Barbara Martinucci & Shelemyahu Zacks, 2018. "Telegraph Process with Elastic Boundary at the Origin," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 333-352, March.
    4. Orsingher, Enzo, 1990. "Probability law, flow function, maximum distribution of wave-governed random motions and their connections with Kirchoff's laws," Stochastic Processes and their Applications, Elsevier, vol. 34(1), pages 49-66, February.
    5. Nikita Ratanov, 2015. "Telegraph Processes with Random Jumps and Complete Market Models," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 677-695, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iuliano, Antonella & Macci, Claudio, 2023. "Asymptotic results for the absorption time of telegraph processes with a non-standard barrier at the origin," Statistics & Probability Letters, Elsevier, vol. 196(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iuliano, Antonella & Macci, Claudio, 2023. "Asymptotic results for the absorption time of telegraph processes with a non-standard barrier at the origin," Statistics & Probability Letters, Elsevier, vol. 196(C).
    2. Antonio Di Crescenzo & Barbara Martinucci & Shelemyahu Zacks, 2018. "Telegraph Process with Elastic Boundary at the Origin," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 333-352, March.
    3. Macci, Claudio, 2016. "Large deviations for some non-standard telegraph processes," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 119-127.
    4. Antonio Crescenzo & Barbara Martinucci & Paola Paraggio & Shelemyahu Zacks, 2021. "Some Results on the Telegraph Process Confined by Two Non-Standard Boundaries," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 837-858, September.
    5. Cinque, Fabrizio, 2022. "A note on the conditional probabilities of the telegraph process," Statistics & Probability Letters, Elsevier, vol. 185(C).
    6. Ratanov, Nikita, 2015. "Hypo-exponential distributions and compound Poisson processes with alternating parameters," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 71-78.
    7. Vladimir Pozdnyakov & L. Mark Elbroch & Anthony Labarga & Thomas Meyer & Jun Yan, 2019. "Discretely Observed Brownian Motion Governed by Telegraph Process: Estimation," Methodology and Computing in Applied Probability, Springer, vol. 21(3), pages 907-920, September.
    8. V. Pozdnyakov & L. M. Elbroch & C. Hu & T. Meyer & J. Yan, 2020. "On Estimation for Brownian Motion Governed by Telegraph Process with Multiple Off States," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1275-1291, September.
    9. Kolesnik, Alexander D. & Turbin, Anatoly F., 1998. "The equation of symmetric Markovian random evolution in a plane," Stochastic Processes and their Applications, Elsevier, vol. 75(1), pages 67-87, June.
    10. Mazza, Christian & Rulliere, Didier, 2004. "A link between wave governed random motions and ruin processes," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 205-222, October.
    11. Johan GB Beumee & Chris Cormack & Peyman Khorsand & Manish Patel, 2014. "Path Diffusion, Part I," Papers 1406.0077, arXiv.org.
    12. Ratanov, Nikita, 2021. "On telegraph processes, their first passage times and running extrema," Statistics & Probability Letters, Elsevier, vol. 174(C).
    13. Bogachev, Leonid & Ratanov, Nikita, 2011. "Occupation time distributions for the telegraph process," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1816-1844, August.
    14. De Gregorio, Alessandro & Iafrate, Francesco, 2021. "Telegraph random evolutions on a circle," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 79-108.
    15. Nikita Ratanov, 2021. "Ornstein-Uhlenbeck Processes of Bounded Variation," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 925-946, September.
    16. Nikita Ratanov, 2016. "Option Pricing Under Jump-Diffusion Processes with Regime Switching," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 829-845, September.
    17. Iacus, Stefano Maria, 2001. "Statistical analysis of the inhomogeneous telegrapher's process," Statistics & Probability Letters, Elsevier, vol. 55(1), pages 83-88, November.
    18. Antonio Di Crescenzo & Shelemyahu Zacks, 2015. "Probability Law and Flow Function of Brownian Motion Driven by a Generalized Telegraph Process," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 761-780, September.
    19. Cinque, Fabrizio & Orsingher, Enzo, 2021. "On the exact distributions of the maximum of the asymmetric telegraph process," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 601-633.
    20. Cinque, Fabrizio & Orsingher, Enzo, 2023. "Random motions in R3 with orthogonal directions," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 173-200.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:23:y:2021:i:3:d:10.1007_s11009-020-09804-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.