IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v34y1990i1p49-66.html
   My bibliography  Save this article

Probability law, flow function, maximum distribution of wave-governed random motions and their connections with Kirchoff's laws

Author

Listed:
  • Orsingher, Enzo

Abstract

In this paper we derive the explicit form of the probability law and of the associated flow function of a random motion governed by the telegraph equation. Connections of this law with the transition function of Brownian motion are explored. Lower bounds for the distribution of its maximum are obtained and some particular distributions of its maximum, conditioned by the number of velocity reversals, are presented. Finally some versions of motion admitting annihilation are proven to be connected with Kirchoff's laws of electrical circuits.

Suggested Citation

  • Orsingher, Enzo, 1990. "Probability law, flow function, maximum distribution of wave-governed random motions and their connections with Kirchoff's laws," Stochastic Processes and their Applications, Elsevier, vol. 34(1), pages 49-66, February.
  • Handle: RePEc:eee:spapps:v:34:y:1990:i:1:p:49-66
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(90)90056-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De Gregorio, Alessandro & Macci, Claudio, 2012. "Large deviation principles for telegraph processes," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1874-1882.
    2. Cinque, Fabrizio & Orsingher, Enzo, 2023. "Random motions in R3 with orthogonal directions," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 173-200.
    3. De Gregorio, Alessandro & Iafrate, Francesco, 2021. "Telegraph random evolutions on a circle," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 79-108.
    4. Kolesnik, Alexander D. & Turbin, Anatoly F., 1998. "The equation of symmetric Markovian random evolution in a plane," Stochastic Processes and their Applications, Elsevier, vol. 75(1), pages 67-87, June.
    5. Antonio Di Crescenzo & Shelemyahu Zacks, 2015. "Probability Law and Flow Function of Brownian Motion Driven by a Generalized Telegraph Process," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 761-780, September.
    6. Antonio Di Crescenzo & Barbara Martinucci & Shelemyahu Zacks, 2018. "Telegraph Process with Elastic Boundary at the Origin," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 333-352, March.
    7. Bogachev, Leonid & Ratanov, Nikita, 2011. "Occupation time distributions for the telegraph process," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1816-1844, August.
    8. Claudio Macci & Barbara Martinucci & Enrica Pirozzi, 2021. "Asymptotic Results for the Absorption Time of Telegraph Processes with Elastic Boundary at the Origin," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 1077-1096, September.
    9. Nikita Ratanov, 2020. "First Crossing Times of Telegraph Processes with Jumps," Methodology and Computing in Applied Probability, Springer, vol. 22(1), pages 349-370, March.
    10. Cinque, Fabrizio & Orsingher, Enzo, 2021. "On the exact distributions of the maximum of the asymmetric telegraph process," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 601-633.
    11. Mazza, Christian & Rulliere, Didier, 2004. "A link between wave governed random motions and ruin processes," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 205-222, October.
    12. Ratanov, Nikita, 2021. "On telegraph processes, their first passage times and running extrema," Statistics & Probability Letters, Elsevier, vol. 174(C).
    13. Iacus, Stefano Maria, 2001. "Statistical analysis of the inhomogeneous telegrapher's process," Statistics & Probability Letters, Elsevier, vol. 55(1), pages 83-88, November.
    14. Macci, Claudio, 2016. "Large deviations for some non-standard telegraph processes," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 119-127.
    15. Cinque, Fabrizio, 2022. "A note on the conditional probabilities of the telegraph process," Statistics & Probability Letters, Elsevier, vol. 185(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:34:y:1990:i:1:p:49-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.