IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v88y2018i2d10.1007_s00186-018-0635-3.html
   My bibliography  Save this article

No-arbitrage and optimal investment with possibly non-concave utilities: a measure theoretical approach

Author

Listed:
  • Romain Blanchard

    (Université Reims Champagne-Ardenne (URCA))

  • Laurence Carassus

    (Pôle Universitaire Léonard de Vinci
    Université Reims Champagne-Ardenne (URCA))

  • Miklós Rásonyi

    (MTA Alfréd Rényi Institute of Mathematics)

Abstract

We consider a discrete-time financial market model with finite time horizon and investors with utility functions defined on the non-negative half-line. We allow these functions to be random, non-concave and non-smooth. We use a dynamic programming framework together with measurable selection arguments to establish both the characterisation of the no-arbitrage property for such markets and the existence of an optimal portfolio strategy for such investors.

Suggested Citation

  • Romain Blanchard & Laurence Carassus & Miklós Rásonyi, 2018. "No-arbitrage and optimal investment with possibly non-concave utilities: a measure theoretical approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(2), pages 241-281, October.
  • Handle: RePEc:spr:mathme:v:88:y:2018:i:2:d:10.1007_s00186-018-0635-3
    DOI: 10.1007/s00186-018-0635-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-018-0635-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-018-0635-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laurence Carassus & Mikl'os R'asonyi & Andrea M. Rodrigues, 2015. "Non-concave utility maximisation on the positive real axis in discrete time," Papers 1501.03123, arXiv.org, revised Apr 2015.
    2. Hanqing Jin & Xun Yu Zhou, 2008. "Behavioral Portfolio Selection In Continuous Time," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 385-426, July.
    3. Xue Dong He & Xun Yu Zhou, 2011. "Portfolio Choice Under Cumulative Prospect Theory: An Analytical Treatment," Management Science, INFORMS, vol. 57(2), pages 315-331, February.
    4. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    5. repec:dau:papers:123456789/2317 is not listed on IDEAS
    6. Laurence Carassus & Miklós Rásonyi, 2015. "On Optimal Investment For A Behavioral Investor In Multiperiod Incomplete Market Models," Mathematical Finance, Wiley Blackwell, vol. 25(1), pages 115-153, January.
    7. Marcel Nutz, 2016. "Utility Maximization Under Model Uncertainty In Discrete Time," Mathematical Finance, Wiley Blackwell, vol. 26(2), pages 252-268, April.
    8. J. Jacod & A.N. Shiryaev, 1998. "Local martingales and the fundamental asset pricing theorems in the discrete-time case," Finance and Stochastics, Springer, vol. 2(3), pages 259-273.
    9. Miklos Rasonyi & Lukasz Stettner, 2005. "On utility maximization in discrete-time financial market models," Papers math/0505243, arXiv.org.
    10. Jörn Sass, 2005. "Portfolio optimization under transaction costs in the CRR model," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 61(2), pages 239-259, June.
    11. Alain Bensoussan & Abel Cadenillas & Hyeng Keun Koo, 2015. "Entrepreneurial Decisions on Effort and Project with a Nonconcave Objective Function," Mathematics of Operations Research, INFORMS, vol. 40(4), pages 902-914, October.
    12. Laurence Carassus & Miklós Rásonyi, 2016. "Maximization of Nonconcave Utility Functions in Discrete-Time Financial Market Models," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 146-173, February.
    13. Jörn Sass & Martin Smaga, 2014. "FTAP in finite discrete time with transaction costs by utility maximization," Finance and Stochastics, Springer, vol. 18(4), pages 805-823, October.
    14. Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laurence Carassus & Massinissa Ferhoune, 2023. "Discrete time optimal investment under model uncertainty," Papers 2307.11919, arXiv.org, revised Feb 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Romain Blanchard & Laurence Carassus & Miklos Rasonyi, 2018. "Optimal investment with possibly non-concave utilities and no-arbitrage: a measure theoretical approach," Post-Print hal-01883419, HAL.
    2. Romain Blanchard & Laurence Carassus & Mikl'os R'asonyi, 2016. "Non-concave optimal investment and no-arbitrage: a measure theoretical approach," Papers 1602.06685, arXiv.org, revised Aug 2016.
    3. Laurence Carassus & Miklós Rásonyi, 2016. "Maximization of Nonconcave Utility Functions in Discrete-Time Financial Market Models," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 146-173, February.
    4. Armstrong, John & Brigo, Damiano, 2019. "Risk managing tail-risk seekers: VaR and expected shortfall vs S-shaped utility," Journal of Banking & Finance, Elsevier, vol. 101(C), pages 122-135.
    5. Huy N. Chau & Mikl'os R'asonyi, 2016. "Skorohod's representation theorem and optimal strategies for markets with frictions," Papers 1606.07311, arXiv.org, revised Apr 2017.
    6. Romain Blanchard & Laurence Carassus, 2019. "No-arbitrage with multiple-priors in discrete time," Papers 1904.08780, arXiv.org, revised Oct 2019.
    7. Miklós Rásonyi & Andrea Meireles‐Rodrigues, 2021. "On utility maximization under model uncertainty in discrete‐time markets," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 149-175, January.
    8. Lou, Youcheng & Strub, Moris S. & Li, Duan & Wang, Shouyang, 2021. "The impact of a reference point determined by social comparison on wealth growth and inequality," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    9. Miklós Rásonyi & Andrea Rodrigues, 2013. "Optimal portfolio choice for a behavioural investor in continuous-time markets," Annals of Finance, Springer, vol. 9(2), pages 291-318, May.
    10. Blanchard, Romain & Carassus, Laurence, 2020. "No-arbitrage with multiple-priors in discrete time," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6657-6688.
    11. Bin Zou, 2017. "Optimal Investment In Hedge Funds Under Loss Aversion," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(03), pages 1-32, May.
    12. Massimiliano Amarante & Mario Ghossoub & Edmund Phelps, 2012. "Contracting for Innovation under Knightian Uncertainty," Cahiers de recherche 18-2012, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    13. Wang, Suxin & Rong, Ximin & Zhao, Hui, 2019. "Optimal investment and benefit payment strategy under loss aversion for target benefit pension plans," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 205-218.
    14. Guan, Guohui & Liang, Zongxia, 2016. "Optimal management of DC pension plan under loss aversion and Value-at-Risk constraints," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 224-237.
    15. Jakusch, Sven Thorsten & Meyer, Steffen & Hackethal, Andreas, 2019. "Taming models of prospect theory in the wild? Estimation of Vlcek and Hens (2011)," SAFE Working Paper Series 146, Leibniz Institute for Financial Research SAFE, revised 2019.
    16. Shuoqing Deng & Xiaolu Tan & Xiang Yu, 2020. "Utility Maximization with Proportional Transaction Costs Under Model Uncertainty," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1210-1236, November.
    17. Shi, Yun & Cui, Xiangyu & Li, Duan, 2015. "Discrete-time behavioral portfolio selection under cumulative prospect theory," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 283-302.
    18. Arvanitis, Stelios & Scaillet, Olivier & Topaloglou, Nikolas, 2020. "Spanning analysis of stock market anomalies under prospect stochastic dominance," Working Papers unige:134101, University of Geneva, Geneva School of Economics and Management.
    19. Huy N. Chau & Miklos Rasonyi, 2019. "Behavioural investors in conic market models," Papers 1903.08156, arXiv.org.
    20. Xun Li & Xiang Yu & Qinyi Zhang, 2021. "Optimal consumption with loss aversion and reference to past spending maximum," Papers 2108.02648, arXiv.org, revised Mar 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:88:y:2018:i:2:d:10.1007_s00186-018-0635-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.