IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v67y2008i1p133-159.html
   My bibliography  Save this article

Vector and matrix apportionment problems and separable convex integer optimization

Author

Listed:
  • N. Gaffke
  • F. Pukelsheim

Abstract

The problems of (bi-)proportional rounding of a nonnegative vector or matrix, resp., are written as particular separable convex integer minimization problems. Allowing any convex (separable) objective function we use the notions of vector and matrix apportionment problems. As a broader class of problems we consider separable convex integer minimization under linear equality restrictions Ax = b with any totally unimodular coefficient matrix A. By the total unimodularity Fenchel duality applies, despite the integer restrictions of the variables. The biproportional algorithm of Balinski and Demange (Math Program 45:193–210, 1989) is generalized and derives from the dual optimization problem. Also, a primal augmentation algorithm is stated. Finally, for the smaller class of matrix apportionment problems we discuss the alternating scaling algorithm, which is a discrete variant of the well-known Iterative Proportional Fitting procedure. Copyright Springer-Verlag 2008

Suggested Citation

  • N. Gaffke & F. Pukelsheim, 2008. "Vector and matrix apportionment problems and separable convex integer optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 67(1), pages 133-159, February.
  • Handle: RePEc:spr:mathme:v:67:y:2008:i:1:p:133-159
    DOI: 10.1007/s00186-007-0184-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-007-0184-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-007-0184-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. J. J. te Riele, 1978. "The proportional representation problem in the Second Chamber: an approach via minimal distances," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 32(4), pages 163-179, December.
    2. Michel L. Balinski & Gabrielle Demange, 1989. "Algorithm for Proportional Matrices in Reals and Integers," Post-Print halshs-00585327, HAL.
    3. Michel Balinski, 2006. "Apportionment: Uni- and Bi-Dimensional," Studies in Choice and Welfare, in: Bruno Simeone & Friedrich Pukelsheim (ed.), Mathematics and Democracy, pages 43-53, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oelbermann, Kai-Friederike, 2016. "Alternate Scaling algorithm for biproportional divisor methods," Mathematical Social Sciences, Elsevier, vol. 80(C), pages 25-32.
    2. Niemeyer, Horst F. & Niemeyer, Alice C., 2008. "Apportionment methods," Mathematical Social Sciences, Elsevier, vol. 56(2), pages 240-253, September.
    3. Kerem Akartunalı & Philip A. Knight, 2017. "Network models and biproportional rounding for fair seat allocations in the UK elections," Annals of Operations Research, Springer, vol. 253(1), pages 1-19, June.
    4. Paolo Serafini, 2015. "Certificates of optimality for minimum norm biproportional apportionments," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 44(1), pages 1-12, January.
    5. Friedrich Pukelsheim, 2014. "Biproportional scaling of matrices and the iterative proportional fitting procedure," Annals of Operations Research, Springer, vol. 215(1), pages 269-283, April.
    6. Gaffke, Norbert & Pukelsheim, Friedrich, 2008. "Divisor methods for proportional representation systems: An optimization approach to vector and matrix apportionment problems," Mathematical Social Sciences, Elsevier, vol. 56(2), pages 166-184, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Demange, Gabrielle, 2012. "On party-proportional representation under district distortions," Mathematical Social Sciences, Elsevier, vol. 63(2), pages 181-191.
    2. Gianfranco Gambarelli, 1999. "Maximax Apportionments," Group Decision and Negotiation, Springer, vol. 8(6), pages 441-461, November.
    3. Oelbermann, Kai-Friederike, 2016. "Alternate Scaling algorithm for biproportional divisor methods," Mathematical Social Sciences, Elsevier, vol. 80(C), pages 25-32.
    4. Gabrielle Demange, 2021. "On the resolution of cross-liabilities," PSE Working Papers halshs-03151128, HAL.
    5. Michel Balinski, 2007. "Equitable representation and recruitment," Annals of Operations Research, Springer, vol. 149(1), pages 27-36, February.
    6. Ricca, Federica & Scozzari, Andrea & Simeone, Bruno, 2011. "The give-up problem for blocked regional lists with multi-winners," Mathematical Social Sciences, Elsevier, vol. 62(1), pages 14-24, July.
    7. Katarzyna Cegiełka & Janusz Łyko & Radosław Rudek, 2019. "Beyond the Cambridge Compromise algorithm towards degressively proportional allocations," Operational Research, Springer, vol. 19(2), pages 317-332, June.
    8. Gabrielle Demange, 2020. "Resolution rules in a system of financially linked firms," Working Papers hal-02502413, HAL.
    9. Sebastian Maier & Petur Zachariassen & Martin Zachariasen, 2010. "Divisor-Based Biproportional Apportionment in Electoral Systems: A Real-Life Benchmark Study," Management Science, INFORMS, vol. 56(2), pages 373-387, February.
    10. Gaffke, Norbert & Pukelsheim, Friedrich, 2008. "Divisor methods for proportional representation systems: An optimization approach to vector and matrix apportionment problems," Mathematical Social Sciences, Elsevier, vol. 56(2), pages 166-184, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:67:y:2008:i:1:p:133-159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.