IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v52y2000i3p489-499.html
   My bibliography  Save this article

Solving the discrete-continuous project scheduling problem via its discretization

Author

Listed:
  • Joanna Józefowska
  • Marek Mika
  • Rafał Różycki
  • Grzegorz Waligóra
  • Jan Weglarz

Abstract

In this paper a discrete-continuous project scheduling problem is considered. In this problem activities simultaneously require discrete and continuous resources. The processing rate of each activity depends on the amount of the continuous resource allotted to this activity at a time. All the resources are renewable ones. The activities are nonpreemtable and the objective is to minimize the makespan. Discretization of this problem leading to a classical (i.e. discrete) project scheduling problem in the multi-mode version is presented. A simulated annealing (SA) approach to solving this problem is described and tested computationally in two versions: with and without finding an optimal continuous resource allocation for the final schedule. In the former case a nonlinear solver is used for solving a corresponding convex programming problem. The results are compared with the results obtained using SA for the discrete-continuous project scheduling problem where the nonlinear solver is used for exact solving the continuous part in each iteration. The results of a computational experiment are analyzed and some conclusions are included. Copyright Springer-Verlag Berlin Heidelberg 2000

Suggested Citation

  • Joanna Józefowska & Marek Mika & Rafał Różycki & Grzegorz Waligóra & Jan Weglarz, 2000. "Solving the discrete-continuous project scheduling problem via its discretization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 52(3), pages 489-499, December.
  • Handle: RePEc:spr:mathme:v:52:y:2000:i:3:p:489-499
    DOI: 10.1007/s001860000094
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s001860000094
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s001860000094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joanna Józefowska & Mariusz Nowak & Rafał Różycki & Grzegorz Waligóra, 2022. "Survey on Optimization Models for Energy-Efficient Computing Systems," Energies, MDPI, vol. 15(22), pages 1-20, November.
    2. Ernst Althaus & André Brinkmann & Peter Kling & Friedhelm Meyer Heide & Lars Nagel & Sören Riechers & Jiří Sgall & Tim Süß, 2018. "Scheduling shared continuous resources on many-cores," Journal of Scheduling, Springer, vol. 21(1), pages 77-92, February.
    3. Hartmann, Sönke & Briskorn, Dirk, 2008. "A survey of variants and extensions of the resource-constrained project scheduling problem," Working Paper Series 02/2008, Hamburg School of Business Administration (HSBA).
    4. Naber, Anulark & Kolisch, Rainer, 2014. "MIP models for resource-constrained project scheduling with flexible resource profiles," European Journal of Operational Research, Elsevier, vol. 239(2), pages 335-348.
    5. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:52:y:2000:i:3:p:489-499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.