IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v25y2019i4d10.1007_s10985-019-09465-1.html
   My bibliography  Save this article

Extending Bayesian back-calculation to estimate age and time specific HIV incidence

Author

Listed:
  • Francesco Brizzi

    (University of Cambridge)

  • Paul J. Birrell

    (University of Cambridge)

  • Martyn T. Plummer

    (IARC)

  • Peter Kirwan

    (Public Health England)

  • Alison E. Brown

    (Public Health England)

  • Valerie C. Delpech

    (Public Health England)

  • O. Noel Gill

    (Public Health England)

  • Daniela Angelis

    (University of Cambridge
    Public Health England)

Abstract

CD4-based multi-state back-calculation methods are key for monitoring the HIV epidemic, providing estimates of HIV incidence and diagnosis rates by disentangling their inter-related contribution to the observed surveillance data. This paper, extends existing approaches to age-specific settings, permitting the joint estimation of age- and time-specific incidence and diagnosis rates and the derivation of other epidemiological quantities of interest. This allows the identification of specific age-groups at higher risk of infection, which is crucial in directing public health interventions. We investigate, through simulation studies, the suitability of various bivariate splines for the non-parametric modelling of the latent age- and time-specific incidence and illustrate our method on routinely collected data from the HIV epidemic among gay and bisexual men in England and Wales.

Suggested Citation

  • Francesco Brizzi & Paul J. Birrell & Martyn T. Plummer & Peter Kirwan & Alison E. Brown & Valerie C. Delpech & O. Noel Gill & Daniela Angelis, 2019. "Extending Bayesian back-calculation to estimate age and time specific HIV incidence," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 757-780, October.
  • Handle: RePEc:spr:lifeda:v:25:y:2019:i:4:d:10.1007_s10985-019-09465-1
    DOI: 10.1007/s10985-019-09465-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-019-09465-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-019-09465-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    2. O. O. Aalen & V. T. Farewell & D. De Angelis & N. E. DAY, 1994. "The Use of Human Immunodeficiency Virus Diagnosis Information in Monitoring the Acquired Immune Deficiency Syndrome Epidemic," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 157(1), pages 3-16, January.
    3. S. Deuffic-Burban & T. Poynard & M.S. Sulkowski & J.B. Wong, 2007. "Estimating the future health burden of chronic hepatitis C and human immunodeficiency virus infections in the United States," Post-Print hal-00199768, HAL.
    4. Marra, Giampiero & Wood, Simon N., 2011. "Practical variable selection for generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2372-2387, July.
    5. P. H. Chau & Paul S. F. Yip & Jisheng S. Cui, 2003. "Reconstructing the incidence of human immunodeficiency virus (HIV) in Hong Kong by using data from HIV positive tests and diagnoses of acquired immune deficiency syndrome," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(2), pages 237-248, May.
    6. Wood, Simon N., 2016. "Just Another Gibbs Additive Modeler: Interfacing JAGS and mgcv," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 75(i07).
    7. Simon N. Wood, 2003. "Thin plate regression splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 95-114, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ørnulf Borgan & Håkon K. Gjessing, 2019. "Special issue dedicated to Odd O. Aalen," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 587-592, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Goubar & A. E. Ades & D. De Angelis & C. A. McGarrigle & C. H. Mercer & P. A. Tookey & K. Fenton & O. N. Gill, 2008. "Estimates of human immunodeficiency virus prevalence and proportion diagnosed based on Bayesian multiparameter synthesis of surveillance data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(3), pages 541-580, June.
    2. Gressani, Oswaldo & Lambert, Philippe, 2021. "Laplace approximations for fast Bayesian inference in generalized additive models based on P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    3. David L. Miller & Richard Glennie & Andrew E. Seaton, 2020. "Understanding the Stochastic Partial Differential Equation Approach to Smoothing," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(1), pages 1-16, March.
    4. Thi Huong Trinh & Christine Thomas-Agnan & Michel Simioni, 2016. "Calorie intake and income in China: new evidence using semiparametric modelling with generalized additive models," Post-Print hal-01515007, HAL.
    5. Théo Michelot & Richard Glennie & Catriona Harris & Len Thomas, 2021. "Varying-Coefficient Stochastic Differential Equations with Applications in Ecology," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 446-463, September.
    6. Gabriel Riutort-Mayol & Virgilio Gómez-Rubio & José Luis Lerma & Julio M. del Hoyo-Meléndez, 2020. "Correlated Functional Models with Derivative Information for Modeling Microfading Spectrometry Data on Rock Art Paintings," Mathematics, MDPI, vol. 8(12), pages 1-25, December.
    7. Simon N. Wood, 2020. "Inference and computation with generalized additive models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 307-339, June.
    8. David C. Broadstock & Shunsuke Managi & Roman Matousek & Nickolaos G. Tzeremes, 2019. "Does doing “good” always translate into doing “well”? An eco‐efficiency perspective," Business Strategy and the Environment, Wiley Blackwell, vol. 28(6), pages 1199-1217, September.
    9. Roland Langrock & Timo Adam & Vianey Leos‐Barajas & Sina Mews & David L. Miller & Yannis P. Papastamatiou, 2018. "Spline‐based nonparametric inference in general state‐switching models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 179-200, August.
    10. Vijay A. Murik, 2013. "Bond pricing with a surface of zero coupon yields," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 53(2), pages 497-512, June.
    11. M.L. Nores & M.P. Díaz, 2016. "Bootstrap hypothesis testing in generalized additive models for comparing curves of treatments in longitudinal studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(5), pages 810-826, April.
    12. Georgios Gioldasis & Antonio Musolesi & Michel Simioni, 2020. "Model uncertainty, nonlinearities and out-of-sample comparison: evidence from international technology diffusion," Working Papers hal-02790523, HAL.
    13. Francis,David C. & Kubinec ,Robert, 2022. "Beyond Political Connections : A Measurement Model Approach to Estimating Firm-levelPolitical Influence in 41 Economies," Policy Research Working Paper Series 10119, The World Bank.
    14. Martinovici, A., 2019. "Revealing attention - how eye movements predict brand choice and moment of choice," Other publications TiSEM 7dca38a5-9f78-4aee-bd81-c, Tilburg University, School of Economics and Management.
    15. Yongping Bao & Ludwig Danwitz & Fabian Dvorak & Sebastian Fehrler & Lars Hornuf & Hsuan Yu Lin & Bettina von Helversen, 2022. "Similarity and Consistency in Algorithm-Guided Exploration," CESifo Working Paper Series 10188, CESifo.
    16. Torsten Heinrich & Jangho Yang & Shuanping Dai, 2020. "Growth, development, and structural change at the firm-level: The example of the PR China," Papers 2012.14503, arXiv.org.
    17. van Kesteren Erik-Jan & Bergkamp Tom, 2023. "Bayesian analysis of Formula One race results: disentangling driver skill and constructor advantage," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 19(4), pages 273-293, December.
    18. Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    19. Zak-Szatkowska, Malgorzata & Bogdan, Malgorzata, 2011. "Modified versions of the Bayesian Information Criterion for sparse Generalized Linear Models," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2908-2924, November.
    20. Iñaki Galán & Lorena Simón & Elena Boldo & Cristina Ortiz & Rafael Fernández-Cuenca & Cristina Linares & María José Medrano & Roberto Pastor-Barriuso, 2017. "Changes in hospitalizations for chronic respiratory diseases after two successive smoking bans in Spain," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:25:y:2019:i:4:d:10.1007_s10985-019-09465-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.