IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v25y2012i4d10.1007_s10959-010-0328-1.html
   My bibliography  Save this article

Reflected Generalized Backward Doubly SDEs Driven by Lévy Processes and Applications

Author

Listed:
  • Auguste Aman

    (Université de Cocody)

Abstract

In this paper, we study reflected generalized backward doubly stochastic differential equations driven by Teugels martingales associated with Lévy process (RGBDSDELs in short) with one continuous barrier. Under uniformly Lipschitz coefficients, we prove an existence and uniqueness result by means of the penalization method and the fixed-point theorem. As an application, this study allows us to give a probabilistic representation for the solutions to a class of reflected stochastic partial differential integral equations (SPDIEs in short) with a nonlinear Neumann boundary condition.

Suggested Citation

  • Auguste Aman, 2012. "Reflected Generalized Backward Doubly SDEs Driven by Lévy Processes and Applications," Journal of Theoretical Probability, Springer, vol. 25(4), pages 1153-1172, December.
  • Handle: RePEc:spr:jotpro:v:25:y:2012:i:4:d:10.1007_s10959-010-0328-1
    DOI: 10.1007/s10959-010-0328-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-010-0328-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-010-0328-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nualart, David & Schoutens, Wim, 2000. "Chaotic and predictable representations for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 90(1), pages 109-122, November.
    2. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    3. Matoussi, Anis, 1997. "Reflected solutions of backward stochastic differential equations with continuous coefficient," Statistics & Probability Letters, Elsevier, vol. 34(4), pages 347-354, June.
    4. Mohamed El Otmani, 2006. "Generalized BSDE driven by a Lévy process," International Journal of Stochastic Analysis, Hindawi, vol. 2006, pages 1-25, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Xiliang & Ren, Yong & Zhu, Dongjin, 2010. "A note on the doubly reflected backward stochastic differential equations driven by a Lévy process," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 690-696, April.
    2. Lionnet, Arnaud, 2014. "Some results on general quadratic reflected BSDEs driven by a continuous martingale," Stochastic Processes and their Applications, Elsevier, vol. 124(3), pages 1275-1302.
    3. Mohamed Otmani, 2009. "Reflected BSDE Driven by a Lévy Process," Journal of Theoretical Probability, Springer, vol. 22(3), pages 601-619, September.
    4. Bayraktar, Erhan & Yao, Song, 2012. "Quadratic reflected BSDEs with unbounded obstacles," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1155-1203.
    5. Nie, Tianyang & Rutkowski, Marek, 2014. "Multi-player stopping games with redistribution of payoffs and BSDEs with oblique reflection," Stochastic Processes and their Applications, Elsevier, vol. 124(8), pages 2672-2698.
    6. El Otmani, Mohamed, 2008. "BSDE driven by a simple Lévy process with continuous coefficient," Statistics & Probability Letters, Elsevier, vol. 78(11), pages 1259-1265, August.
    7. Fujii, Masaaki & Takahashi, Akihiko, 2019. "Solving backward stochastic differential equations with quadratic-growth drivers by connecting the short-term expansions," Stochastic Processes and their Applications, Elsevier, vol. 129(5), pages 1492-1532.
    8. Bouchard Bruno & Tan Xiaolu & Zou Yiyi & Warin Xavier, 2017. "Numerical approximation of BSDEs using local polynomial drivers and branching processes," Monte Carlo Methods and Applications, De Gruyter, vol. 23(4), pages 241-263, December.
    9. Fan, ShengJun, 2016. "Existence of solutions to one-dimensional BSDEs with semi-linear growth and general growth generators," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 7-15.
    10. Masaaki Fujii & Akihiko Takahashi, 2015. "Perturbative Expansion Technique for Non-linear FBSDEs with Interacting Particle Method," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 22(3), pages 283-304, September.
    11. Kupper, Michael & Luo, Peng & Tangpi, Ludovic, 2019. "Multidimensional Markovian FBSDEs with super-quadratic growth," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 902-923.
    12. Mingyu Xu, 2007. "Reflected Backward SDEs with Two Barriers Under Monotonicity and General Increasing Conditions," Journal of Theoretical Probability, Springer, vol. 20(4), pages 1005-1039, December.
    13. Gobet, Emmanuel & Labart, Céline, 2007. "Error expansion for the discretization of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 803-829, July.
    14. Han, Xingyu, 2018. "Pricing and hedging vulnerable option with funding costs and collateral," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 103-115.
    15. Giorgia Callegaro & Alessandro Gnoatto & Martino Grasselli, 2021. "A Fully Quantization-based Scheme for FBSDEs," Working Papers 07/2021, University of Verona, Department of Economics.
    16. Dirk Becherer & Wilfried Kuissi-Kamdem & Olivier Menoukeu-Pamen, 2023. "Optimal consumption with labor income and borrowing constraints for recursive preferences," Working Papers hal-04017143, HAL.
    17. Qi Zeng & Hae Won (Henny) Jung, 2014. "Optimal Contract, Ownership Structure and Asset Pricing," 2014 Meeting Papers 911, Society for Economic Dynamics.
    18. P. Marín-Rubio & J. Real, 2004. "Some Results on Stochastic Differential Equations with Reflecting Boundary Conditions," Journal of Theoretical Probability, Springer, vol. 17(3), pages 705-716, July.
    19. Shaolin Ji & Xiaomin Shi, 2016. "Explicit solutions for continuous time mean-variance portfolio selection with nonlinear wealth equations," Papers 1606.05488, arXiv.org.
    20. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:25:y:2012:i:4:d:10.1007_s10959-010-0328-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.