IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v23y2010i2d10.1007_s10959-009-0220-z.html
   My bibliography  Save this article

Convexity and Smoothness of Scale Functions and de Finetti’s Control Problem

Author

Listed:
  • Andreas E. Kyprianou

    (University of Bath)

  • Víctor Rivero

    (University of Bath
    Centro de Investigación en Matemáticas (CIMAT A.C.))

  • Renming Song

    (University of Illinois)

Abstract

We continue the recent work of Avram et al. (Ann. Appl. Probab. 17:156–180, 2007) and Loeffen (Ann. Appl. Probab., 2007) by showing that whenever the Lévy measure of a spectrally negative Lévy process has a density which is log-convex then the solution of the associated actuarial control problem of de Finetti is solved by a barrier strategy. Moreover, the level of the barrier can be identified in terms of the scale function of the underlying Lévy process. Our method appeals directly to very recent developments in the theory of potential analysis of subordinators and their application to convexity and smoothness properties of the relevant scale functions.

Suggested Citation

  • Andreas E. Kyprianou & Víctor Rivero & Renming Song, 2010. "Convexity and Smoothness of Scale Functions and de Finetti’s Control Problem," Journal of Theoretical Probability, Springer, vol. 23(2), pages 547-564, June.
  • Handle: RePEc:spr:jotpro:v:23:y:2010:i:2:d:10.1007_s10959-009-0220-z
    DOI: 10.1007/s10959-009-0220-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-009-0220-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-009-0220-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pablo Azcue & Nora Muler, 2005. "Optimal Reinsurance And Dividend Distribution Policies In The Cramér‐Lundberg Model," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 261-308, April.
    2. Renming Song & Zoran Vondraček, 2006. "Potential Theory of Special Subordinators and Subordinate Killed Stable Processes," Journal of Theoretical Probability, Springer, vol. 19(4), pages 817-847, December.
    3. Florin Avram & Zbigniew Palmowski & Martijn R. Pistorius, 2007. "On the optimal dividend problem for a spectrally negative L\'{e}vy process," Papers math/0702893, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenyuan Wang & Yuebao Wang & Ping Chen & Xueyuan Wu, 2022. "Dividend and Capital Injection Optimization with Transaction Cost for Lévy Risk Processes," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 924-965, September.
    2. Amaury Lambert & Florian Simatos, 2015. "Asymptotic Behavior of Local Times of Compound Poisson Processes with Drift in the Infinite Variance Case," Journal of Theoretical Probability, Springer, vol. 28(1), pages 41-91, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenyuan Wang & Yuebao Wang & Ping Chen & Xueyuan Wu, 2022. "Dividend and Capital Injection Optimization with Transaction Cost for Lévy Risk Processes," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 924-965, September.
    2. Yin, Chuancun & Wen, Yuzhen, 2013. "Optimal dividend problem with a terminal value for spectrally positive Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 769-773.
    3. Gajek, Lesław & Kuciński, Łukasz, 2017. "Complete discounted cash flow valuation," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 1-19.
    4. GOREAC, Dan & LI, Juan & XU, Boxiang, 2022. "Linearisation Techniques and the Dual Algorithm for a Class of Mixed Singular/Continuous Control Problems in Reinsurance. Part I: Theoretical Aspects," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    5. Ying Shen & Chuancun Yin & Kam Chuen Yuen, 2011. "Alternative approach to the optimality of the threshold strategy for spectrally negative Levy processes," Papers 1101.0446, arXiv.org, revised Feb 2014.
    6. Ran Xu & Wenyuan Wang & Jose Garrido, 2022. "Optimal Dividend Strategy Under Parisian Ruin with Affine Penalty," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1385-1409, September.
    7. Luis Alvarez & Teppo Rakkolainen, 2009. "Optimal payout policy in presence of downside risk," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(1), pages 27-58, March.
    8. Bayraktar, Erhan & Kyprianou, Andreas E. & Yamazaki, Kazutoshi, 2013. "On Optimal Dividends In The Dual Model," ASTIN Bulletin, Cambridge University Press, vol. 43(3), pages 359-372, September.
    9. Benjamin Avanzi & Hayden Lau & Bernard Wong, 2020. "Optimal periodic dividend strategies for spectrally negative L\'evy processes with fixed transaction costs," Papers 2004.01838, arXiv.org, revised Dec 2020.
    10. Chuancun Yin, 2013. "Optimal dividend problem for a generalized compound Poisson risk model," Papers 1305.1747, arXiv.org, revised Feb 2014.
    11. Julia Eisenberg & Zbigniew Palmowski, 2020. "Optimal Dividends Paid in a Foreign Currency for a L\'evy Insurance Risk Model," Papers 2001.03733, arXiv.org.
    12. Avram, Florin & Vu, Nhat Linh & Zhou, Xiaowen, 2017. "On taxed spectrally negative Lévy processes with draw-down stopping," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 69-74.
    13. Ewa Marciniak & Zbigniew Palmowski, 2016. "On the Optimal Dividend Problem for Insurance Risk Models with Surplus-Dependent Premiums," Papers 1604.06892, arXiv.org.
    14. Masahiko Egami & Kazutoshi Yamazaki, 2010. "Solving Optimal Dividend Problems via Phase-Type Fitting Approximation of Scale Functions," Discussion papers e-10-011, Graduate School of Economics Project Center, Kyoto University.
    15. Ewa Marciniak & Zbigniew Palmowski, 2016. "On the Optimal Dividend Problem for Insurance Risk Models with Surplus-Dependent Premiums," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 723-742, February.
    16. Hernández, Camilo & Junca, Mauricio & Moreno-Franco, Harold, 2018. "A time of ruin constrained optimal dividend problem for spectrally one-sided Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 57-68.
    17. Florin Avram & Andras Horváth & Serge Provost & Ulyses Solon, 2019. "On the Padé and Laguerre–Tricomi–Weeks Moments Based Approximations of the Scale Function W and of the Optimal Dividends Barrier for Spectrally Negative Lévy Risk Processes," Risks, MDPI, vol. 7(4), pages 1-24, December.
    18. F. Avram & Z. Palmowski & M. R. Pistorius, 2011. "On Gerber-Shiu functions and optimal dividend distribution for a L\'{e}vy risk process in the presence of a penalty function," Papers 1110.4965, arXiv.org, revised Jun 2015.
    19. Camilo Hernandez & Mauricio Junca & Harold Moreno-Franco, 2016. "A time of ruin constrained optimal dividend problem for spectrally one-sided L\'evy processes," Papers 1608.02550, arXiv.org, revised May 2017.
    20. Xiaoqing Liang & Zbigniew Palmowski, 2016. "A note on optimal expected utility of dividend payments with proportional reinsurance," Papers 1605.06849, arXiv.org, revised May 2017.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:23:y:2010:i:2:d:10.1007_s10959-009-0220-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.