IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v179y2018i3d10.1007_s10957-018-1377-3.html
   My bibliography  Save this article

An Accelerated Three-Term Conjugate Gradient Method with Sufficient Descent Condition and Conjugacy Condition

Author

Listed:
  • XiaoLiang Dong

    (North Minzu University)

  • Deren Han

    (Beihang University)

  • Zhifeng Dai

    (Changsha University of Science and Technology)

  • Lixiang Li

    (Guilin University of Electronic Technology)

  • Jianguang Zhu

    (Shandong University of Science and Technology)

Abstract

An accelerated three-term conjugate gradient method is proposed, in which the search direction can satisfy the sufficient descent condition as well as extended Dai–Liao conjugacy condition. Different from the existent methods, a dynamical compensation strategy in our proposed method is considered, that is Li–Fushikuma-type quasi-Newton equation is satisfied as much as possible, otherwise, to some extent, the singular values of iteration matrix of search directions will adaptively clustered, which substantially benefits acceleration the convergence or reduction in the condition number of iteration matrix. Global convergence is established under mild conditions for general objective functions. We also report some numerical results to show its efficiency.

Suggested Citation

  • XiaoLiang Dong & Deren Han & Zhifeng Dai & Lixiang Li & Jianguang Zhu, 2018. "An Accelerated Three-Term Conjugate Gradient Method with Sufficient Descent Condition and Conjugacy Condition," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 944-961, December.
  • Handle: RePEc:spr:joptap:v:179:y:2018:i:3:d:10.1007_s10957-018-1377-3
    DOI: 10.1007/s10957-018-1377-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-018-1377-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-018-1377-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gonglin Yuan & Zehong Meng & Yong Li, 2016. "A Modified Hestenes and Stiefel Conjugate Gradient Algorithm for Large-Scale Nonsmooth Minimizations and Nonlinear Equations," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 129-152, January.
    2. Kaori Sugiki & Yasushi Narushima & Hiroshi Yabe, 2012. "Globally Convergent Three-Term Conjugate Gradient Methods that Use Secant Conditions and Generate Descent Search Directions for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 153(3), pages 733-757, June.
    3. Wanyou Cheng & Donghui Li, 2012. "An Active Set Modified Polak–Ribiére–Polyak Method for Large-Scale Nonlinear Bound Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 1084-1094, December.
    4. Dai, Zhifeng & Chen, Xiaohong & Wen, Fenghua, 2015. "A modified Perry’s conjugate gradient method-based derivative-free method for solving large-scale nonlinear monotone equations," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 378-386.
    5. Avinoam Perry, 1976. "A Modified Conjugate Gradient Algorithm," Discussion Papers 229, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    6. Dai, Zhifeng & Wen, Fenghua, 2018. "Some improved sparse and stable portfolio optimization problems," Finance Research Letters, Elsevier, vol. 27(C), pages 46-52.
    7. Mehiddin Al-Baali & Yasushi Narushima & Hiroshi Yabe, 2015. "A family of three-term conjugate gradient methods with sufficient descent property for unconstrained optimization," Computational Optimization and Applications, Springer, vol. 60(1), pages 89-110, January.
    8. Mehiddin Al-Baali & Andrea Caliciotti & Giovanni Fasano & Massimo Roma, 2017. "Exploiting damped techniques for nonlinear conjugate gradient methods," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(3), pages 501-522, December.
    9. Dong, Xiao Liang & Liu, Hong Wei & He, Yu Bo, 2015. "New version of the three-term conjugate gradient method based on spectral scaling conjugacy condition that generates descent search direction," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 606-617.
    10. Babaie-Kafaki, Saman & Ghanbari, Reza, 2014. "The Dai–Liao nonlinear conjugate gradient method with optimal parameter choices," European Journal of Operational Research, Elsevier, vol. 234(3), pages 625-630.
    11. Saman Babaie-Kafaki, 2015. "On Optimality of the Parameters of Self-Scaling Memoryless Quasi-Newton Updating Formulae," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 91-101, October.
    12. Andrei, Neculai, 2010. "Accelerated scaled memoryless BFGS preconditioned conjugate gradient algorithm for unconstrained optimization," European Journal of Operational Research, Elsevier, vol. 204(3), pages 410-420, August.
    13. XiaoLiang Dong & Hongwei Liu & Yubo He, 2015. "A Self-Adjusting Conjugate Gradient Method with Sufficient Descent Condition and Conjugacy Condition," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 225-241, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tiantian Zhao & Wei Hong Yang, 2023. "A Nonlinear Conjugate Gradient Method Using Inexact First-Order Information," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 502-530, August.
    2. Parvaneh Faramarzi & Keyvan Amini, 2019. "A Modified Spectral Conjugate Gradient Method with Global Convergence," Journal of Optimization Theory and Applications, Springer, vol. 182(2), pages 667-690, August.
    3. Zhu, Zhibin & Zhang, Dongdong & Wang, Shuo, 2020. "Two modified DY conjugate gradient methods for unconstrained optimization problems," Applied Mathematics and Computation, Elsevier, vol. 373(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Xiao Liang & Liu, Hong Wei & He, Yu Bo, 2015. "New version of the three-term conjugate gradient method based on spectral scaling conjugacy condition that generates descent search direction," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 606-617.
    2. Qi Tian & Xiaoliang Wang & Liping Pang & Mingkun Zhang & Fanyun Meng, 2021. "A New Hybrid Three-Term Conjugate Gradient Algorithm for Large-Scale Unconstrained Problems," Mathematics, MDPI, vol. 9(12), pages 1-13, June.
    3. Yasushi Narushima & Shummin Nakayama & Masashi Takemura & Hiroshi Yabe, 2023. "Memoryless Quasi-Newton Methods Based on the Spectral-Scaling Broyden Family for Riemannian Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 639-664, May.
    4. Babaie-Kafaki, Saman & Ghanbari, Reza, 2014. "The Dai–Liao nonlinear conjugate gradient method with optimal parameter choices," European Journal of Operational Research, Elsevier, vol. 234(3), pages 625-630.
    5. Zhifeng Dai, 2017. "Comments on Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 286-291, October.
    6. Auwal Bala Abubakar & Poom Kumam & Aliyu Muhammed Awwal & Phatiphat Thounthong, 2019. "A Modified Self-Adaptive Conjugate Gradient Method for Solving Convex Constrained Monotone Nonlinear Equations for Signal Recovery Problems," Mathematics, MDPI, vol. 7(8), pages 1-24, August.
    7. Saman Babaie-Kafaki & Reza Ghanbari, 2016. "Descent Symmetrization of the Dai–Liao Conjugate Gradient Method," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(02), pages 1-10, April.
    8. Bakhtawar Baluch & Zabidin Salleh & Ahmad Alhawarat & U. A. M. Roslan, 2017. "A New Modified Three-Term Conjugate Gradient Method with Sufficient Descent Property and Its Global Convergence," Journal of Mathematics, Hindawi, vol. 2017, pages 1-12, September.
    9. Hongwei Liu & Zexian Liu, 2019. "An Efficient Barzilai–Borwein Conjugate Gradient Method for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 879-906, March.
    10. Gao, Peiting & He, Chuanjiang & Liu, Yang, 2019. "An adaptive family of projection methods for constrained monotone nonlinear equations with applications," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 1-16.
    11. Zohre Aminifard & Saman Babaie-Kafaki, 2019. "An optimal parameter choice for the Dai–Liao family of conjugate gradient methods by avoiding a direction of the maximum magnification by the search direction matrix," 4OR, Springer, vol. 17(3), pages 317-330, September.
    12. Xiaoyu Wu & Hu Shao & Pengjie Liu & Yue Zhuo, 2023. "An Inertial Spectral CG Projection Method Based on the Memoryless BFGS Update," Journal of Optimization Theory and Applications, Springer, vol. 198(3), pages 1130-1155, September.
    13. Saman Babaie-Kafaki & Reza Ghanbari, 2017. "A class of adaptive Dai–Liao conjugate gradient methods based on the scaled memoryless BFGS update," 4OR, Springer, vol. 15(1), pages 85-92, March.
    14. Yang, Cai & Gong, Xu & Zhang, Hongwei, 2019. "Volatility forecasting of crude oil futures: The role of investor sentiment and leverage effect," Resources Policy, Elsevier, vol. 61(C), pages 548-563.
    15. Chen, Rongda & Xu, Jianjun, 2019. "Forecasting volatility and correlation between oil and gold prices using a novel multivariate GAS model," Energy Economics, Elsevier, vol. 78(C), pages 379-391.
    16. Md Fouad Bin Amin & Mohd Ziaur Rehman, 2022. "Asymmetric Linkages of Oil Prices, Money Supply, and TASI on Sectoral Stock Prices in Saudi Arabia: A Non-Linear ARDL Approach," SAGE Open, , vol. 12(1), pages 21582440211, January.
    17. Xiao, Jihong & Zhou, Min & Wen, Fengming & Wen, Fenghua, 2018. "Asymmetric impacts of oil price uncertainty on Chinese stock returns under different market conditions: Evidence from oil volatility index," Energy Economics, Elsevier, vol. 74(C), pages 777-786.
    18. Xiaoliang Wang & Liping Pang & Qi Wu & Mingkun Zhang, 2021. "An Adaptive Proximal Bundle Method with Inexact Oracles for a Class of Nonconvex and Nonsmooth Composite Optimization," Mathematics, MDPI, vol. 9(8), pages 1-27, April.
    19. Ekaterina Gribanova, 2022. "Elaboration of an Algorithm for Solving Hierarchical Inverse Problems in Applied Economics," Mathematics, MDPI, vol. 10(15), pages 1-19, August.
    20. Zhang, Ruijun & Lu, Jie & Zhang, Guangquan, 2011. "A knowledge-based multi-role decision support system for ore blending cost optimization of blast furnaces," European Journal of Operational Research, Elsevier, vol. 215(1), pages 194-203, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:179:y:2018:i:3:d:10.1007_s10957-018-1377-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.