IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v32y2021i5d10.1007_s10845-020-01718-3.html
   My bibliography  Save this article

In-situ identification of material batches using machine learning for machining operations

Author

Listed:
  • Benjamin Lutz

    (Friedrich-Alexander-University Erlangen-Nürnberg
    Siemens AG)

  • Dominik Kisskalt

    (Friedrich-Alexander-University Erlangen-Nürnberg)

  • Andreas Mayr

    (Friedrich-Alexander-University Erlangen-Nürnberg)

  • Daniel Regulin

    (Siemens AG)

  • Matteo Pantano

    (Siemens AG)

  • Jörg Franke

    (Friedrich-Alexander-University Erlangen-Nürnberg)

Abstract

In subtractive manufacturing, differences in machinability among batches of the same material can be observed. Ignoring these deviations can potentially reduce product quality and increase manufacturing costs. To consider the influence of the material batch in process optimization models, the batch needs to be efficiently identified. Thus, a smart service is proposed for in-situ material batch identification. This service is driven by a supervised machine learning model, which analyzes the signals of the machine’s control, especially torque data, for batch classification. The proposed approach is validated by cutting experiments with five different batches of the same specified material at various cutting conditions. Using this data, multiple classification models are trained and optimized. It is shown that the investigated batches can be correctly identified with close to 90% prediction accuracy using machine learning. Out of all the investigated algorithms, the best results are achieved using a Support Vector Machine with 89.0% prediction accuracy for individual batches and 98.9% while combining batches of similar machinability.

Suggested Citation

  • Benjamin Lutz & Dominik Kisskalt & Andreas Mayr & Daniel Regulin & Matteo Pantano & Jörg Franke, 2021. "In-situ identification of material batches using machine learning for machining operations," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1485-1495, June.
  • Handle: RePEc:spr:joinma:v:32:y:2021:i:5:d:10.1007_s10845-020-01718-3
    DOI: 10.1007/s10845-020-01718-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-020-01718-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-020-01718-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xin Tong & Qiang Liu & Shiwei Pi & Yao Xiao, 2020. "Real-time machining data application and service based on IMT digital twin," Journal of Intelligent Manufacturing, Springer, vol. 31(5), pages 1113-1132, June.
    2. Berend Denkena & Benjamin Bergmann & Matthias Witt, 2019. "Material identification based on machine-learning algorithms for hybrid workpieces during cylindrical operations," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2449-2456, August.
    3. Byeongwoo Jeon & Joo-Sung Yoon & Jumyung Um & Suk-Hwan Suh, 2020. "The architecture development of Industry 4.0 compliant smart machine tool system (SMTS)," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1837-1859, December.
    4. Durga Prasad Penumuru & Sreekumar Muthuswamy & Premkumar Karumbu, 2020. "Identification and classification of materials using machine vision and machine learning in the context of industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 31(5), pages 1229-1241, June.
    5. Xifan Yao & Jiajun Zhou & Yingzi Lin & Yun Li & Hongnian Yu & Ying Liu, 2019. "Smart manufacturing based on cyber-physical systems and beyond," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2805-2817, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chi Ma & Hongquan Gui & Jialan Liu, 2023. "Self learning-empowered thermal error control method of precision machine tools based on digital twin," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 695-717, February.
    2. Jorge L. Alonso-Perez & Selene L. Cardenas-Maciel & Balter Trujillo-Navarrete & Edgar A. Reynoso-Soto & Nohe R. Cazarez-Cazarez, 2022. "An approach for designing smart manufacturing for the research and development of dye-sensitize solar cell," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2307-2320, December.
    3. Shuting Wang & Jie Meng & Yuanlong Xie & Liquan Jiang & Han Ding & Xinyu Shao, 2023. "Reference training system for intelligent manufacturing talent education: platform construction and curriculum development," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1125-1164, March.
    4. Emmanuel Ekene Okere & Ebrahiema Arendse & Alemayehu Ambaw Tsige & Willem Jacobus Perold & Umezuruike Linus Opara, 2022. "Pomegranate Quality Evaluation Using Non-Destructive Approaches: A Review," Agriculture, MDPI, vol. 12(12), pages 1-25, November.
    5. Ahmed Ktari & Mohamed El Mansori, 2022. "Digital twin of functional gating system in 3D printed molds for sand casting using a neural network," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 897-909, March.
    6. Aniket Nagargoje & Pavan Kumar Kankar & Prashant Kumar Jain & Puneet Tandon, 2023. "Application of artificial intelligence techniques in incremental forming: a state-of-the-art review," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 985-1002, March.
    7. Xiaobao Zhu & Jing Shi & Fengjie Xie & Rouqi Song, 2020. "Pricing strategy and system performance in a cloud-based manufacturing system built on blockchain technology," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1985-2002, December.
    8. Ayman AboElHassan & Soumaya Yacout, 2023. "A digital shadow framework using distributed system concepts," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3579-3598, December.
    9. Yun Peng & Shenyi Zhao & Jizhan Liu, 2021. "Fused Deep Features-Based Grape Varieties Identification Using Support Vector Machine," Agriculture, MDPI, vol. 11(9), pages 1-16, September.
    10. Zengya Zhao & Sibao Wang & Zehua Wang & Shilong Wang & Chi Ma & Bo Yang, 2022. "Surface roughness stabilization method based on digital twin-driven machining parameters self-adaption adjustment: a case study in five-axis machining," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 943-952, April.
    11. Kyu Tae Park & Jinho Yang & Sang Do Noh, 2021. "VREDI: virtual representation for a digital twin application in a work-center-level asset administration shell," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 501-544, February.
    12. Sihan Huang & Guoxin Wang & Shiqi Nie & Bin Wang & Yan Yan, 2023. "Part family formation method for delayed reconfigurable manufacturing system based on machine learning," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2849-2863, August.
    13. George Lãzãroiu & Armenia Androniceanu & Iulia Grecu & Gheorghe Grecu & Octav Neguri?ã, 2022. "Artificial intelligence-based decision-making algorithms, Internet of Things sensing networks, and sustainable cyber-physical management systems in big data-driven cognitive manufacturing," Oeconomia Copernicana, Institute of Economic Research, vol. 13(4), pages 1047-1080, December.
    14. Christian Kubik & Sebastian Michael Knauer & Peter Groche, 2022. "Smart sheet metal forming: importance of data acquisition, preprocessing and transformation on the performance of a multiclass support vector machine for predicting wear states during blanking," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 259-282, January.
    15. Camélia Dadouchi & Bruno Agard, 2021. "Recommender systems as an agility enabler in supply chain management," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1229-1248, June.
    16. Silvestro Vespoli & Guido Guizzi & Elisa Gebennini & Andrea Grassi, 2022. "A novel throughput control algorithm for semi-heterarchical industry 4.0 architecture," Annals of Operations Research, Springer, vol. 310(1), pages 201-221, March.
    17. Constantin Aurelian Ionescu & Melinda Timea Fülöp & Dan Ioan Topor & Sorinel Căpușneanu & Teodora Odett Breaz & Sorina Geanina Stănescu & Mihaela Denisa Coman, 2021. "The New Era of Business Digitization through the Implementation of 5G Technology in Romania," Sustainability, MDPI, vol. 13(23), pages 1-23, December.
    18. Kyu Tae Park & Sang Ho Lee & Sang Do Noh, 2022. "Information fusion and systematic logic library-generation methods for self-configuration of autonomous digital twin," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2409-2439, December.
    19. Hien Nguyen Ngoc & Ganix Lasa & Ion Iriarte, 2022. "Human-centred design in industry 4.0: case study review and opportunities for future research," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 35-76, January.
    20. Yi Zhang & Peng Peng & Chongdang Liu & Yanyan Xu & Heming Zhang, 2022. "A sequential resampling approach for imbalanced batch process fault detection in semiconductor manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1057-1072, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:32:y:2021:i:5:d:10.1007_s10845-020-01718-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.