IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v32y2015i3p516-541.html
   My bibliography  Save this article

Discriminant Analysis of Interval Data: An Assessment of Parametric and Distance-Based Approaches

Author

Listed:
  • A. Silva
  • Paula Brito

Abstract

Building on probabilistic models for interval-valued variables, parametric classification rules, based on Normal or Skew-Normal distributions, are derived for interval data. The performance of such rules is then compared with distancebased methods previously investigated. The results show that Gaussian parametric approaches outperform Skew-Normal parametric and distance-based ones in most conditions analyzed. In particular, with heterocedastic data a quadratic Gaussian rule always performs best. Moreover, restricted cases of the variance-covariance matrix lead to parsimonious rules which for small training samples in heterocedastic problems can outperform unrestricted quadratic rules, even in some cases where the model assumed by these rules is not true. These restrictions take into account the particular nature of interval data, where observations are defined by both MidPoints and Ranges, which may or may not be correlated. Under homocedastic conditions linear Gaussian rules are often the best rules, but distance-based methods may perform better in very specific conditions. Copyright Classification Society of North America 2015

Suggested Citation

  • A. Silva & Paula Brito, 2015. "Discriminant Analysis of Interval Data: An Assessment of Parametric and Distance-Based Approaches," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 516-541, October.
  • Handle: RePEc:spr:jclass:v:32:y:2015:i:3:p:516-541
    DOI: 10.1007/s00357-015-9189-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00357-015-9189-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00357-015-9189-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Billard L. & Diday E., 2003. "From the Statistics of Data to the Statistics of Knowledge: Symbolic Data Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 470-487, January.
    2. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    3. Lima Neto, Eufrasio de A. & de Carvalho, Francisco de A.T., 2008. "Centre and Range method for fitting a linear regression model to symbolic interval data," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1500-1515, January.
    4. Bernhard Flury & Martin Schmid & A. Narayanan, 1994. "Error rates in quadratic discrimination with constraints on the covariance matrices," Journal of Classification, Springer;The Classification Society, vol. 11(1), pages 101-120, March.
    5. António Silva & Paula Brito, 2006. "Linear discriminant analysis for interval data," Computational Statistics, Springer, vol. 21(2), pages 289-308, June.
    6. Paula Brito & A. Pedro Duarte Silva, 2012. "Modelling interval data with Normal and Skew-Normal distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(1), pages 3-20, March.
    7. Arellano-Valle, Reinaldo B. & Azzalini, Adelchi, 2008. "The centred parametrization for the multivariate skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 99(7), pages 1362-1382, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dias, Sónia & Brito, Paula & Amaral, Paula, 2021. "Discriminant analysis of distributional data via fractional programming," European Journal of Operational Research, Elsevier, vol. 294(1), pages 206-218.
    2. M. Rosário Oliveira & Margarida Azeitona & António Pacheco & Rui Valadas, 2022. "Association measures for interval variables," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 491-520, September.
    3. A. Pedro Duarte Silva & Peter Filzmoser & Paula Brito, 2018. "Outlier detection in interval data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 785-822, September.
    4. Boris Beranger & Huan Lin & Scott Sisson, 2023. "New models for symbolic data analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 659-699, September.
    5. Rong Guan & Huiwen Wang & Haitao Zheng, 2020. "Improving accuracy of financial distress prediction by considering volatility: an interval-data-based discriminant model," Computational Statistics, Springer, vol. 35(2), pages 491-514, June.
    6. Pierpaolo D’Urso & Riccardo Massari & Livia De Giovanni & Carmela Cappelli, 2017. "Exponential distance-based fuzzy clustering for interval-valued data," Fuzzy Optimization and Decision Making, Springer, vol. 16(1), pages 51-70, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Yuying & Zhang, Xinyu & Wan, Alan T.K. & Wang, Shouyang, 2022. "Model averaging for interval-valued data," European Journal of Operational Research, Elsevier, vol. 301(2), pages 772-784.
    2. Karel Hron & Paula Brito & Peter Filzmoser, 2017. "Exploratory data analysis for interval compositional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(2), pages 223-241, June.
    3. A. Pedro Duarte Silva & Peter Filzmoser & Paula Brito, 2018. "Outlier detection in interval data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 785-822, September.
    4. Liang-Ching Lin & Hsiang-Lin Chien & Sangyeol Lee, 2021. "Symbolic interval-valued data analysis for time series based on auto-interval-regressive models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 295-315, March.
    5. Eufr�sio de A. Lima Neto & Ulisses U. dos Anjos, 2015. "Regression model for interval-valued variables based on copulas," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(9), pages 2010-2029, September.
    6. Drago, Carlo, 2015. "Exploring the Community Structure of Complex Networks," MPRA Paper 81024, University Library of Munich, Germany.
    7. Sun, Yuying & Han, Ai & Hong, Yongmiao & Wang, Shouyang, 2018. "Threshold autoregressive models for interval-valued time series data," Journal of Econometrics, Elsevier, vol. 206(2), pages 414-446.
    8. Lima Neto, Eufrásio de A. & de Carvalho, Francisco de A.T., 2010. "Constrained linear regression models for symbolic interval-valued variables," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 333-347, February.
    9. Phil D. Young & Joshua D. Patrick & John A. Ramey & Dean M. Young, 2020. "An Alternative Matrix Skew-Normal Random Matrix and Some Properties," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(1), pages 28-49, February.
    10. Paolo Giordani, 2015. "Lasso-constrained regression analysis for interval-valued data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(1), pages 5-19, March.
    11. Fei Liu & L. Billard, 2022. "Partition of Interval-Valued Observations Using Regression," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 55-77, March.
    12. Young, Phil D. & Harvill, Jane L. & Young, Dean M., 2016. "A derivation of the multivariate singular skew-normal density function," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 40-45.
    13. Wang, Sheng & Zimmerman, Dale L. & Breheny, Patrick, 2020. "Sparsity-regularized skewness estimation for the multivariate skew normal and multivariate skew t distributions," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    14. Maia, André Luis Santiago & de Carvalho, Francisco de A.T., 2011. "Holt’s exponential smoothing and neural network models for forecasting interval-valued time series," International Journal of Forecasting, Elsevier, vol. 27(3), pages 740-759.
    15. Lin, Wei & González-Rivera, Gloria, 2016. "Interval-valued time series models: Estimation based on order statistics exploring the Agriculture Marketing Service data," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 694-711.
    16. Arellano-Valle, Reinaldo B. & Azzalini, Adelchi, 2013. "The centred parameterization and related quantities of the skew-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 73-90.
    17. Cheolwoo Park & Yongho Jeon & Kee-Hoon Kang, 2016. "An exploratory data analysis in scale-space for interval-valued data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2643-2660, October.
    18. Haas Markus, 2010. "Skew-Normal Mixture and Markov-Switching GARCH Processes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-56, September.
    19. Antonio Calcagnì & Luigi Lombardi & Lorenzo Avanzi & Eduardo Pascali, 2020. "Multiple mediation analysis for interval-valued data," Statistical Papers, Springer, vol. 61(1), pages 347-369, February.
    20. Francesco Cesarone & Rosella Giacometti & Jacopo Maria Ricci, 2023. "Non-parametric cumulants approach for outlier detection of multivariate financial data," Papers 2305.10911, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:32:y:2015:i:3:p:516-541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.