IDEAS home Printed from https://ideas.repec.org/a/spr/grdene/v30y2021i6d10.1007_s10726-020-09653-7.html
   My bibliography  Save this article

Impact of Decision Rules and Non-cooperative Behaviors on Minimum Consensus Cost in Group Decision Making

Author

Listed:
  • Weijun Xu

    (South China University of Technology)

  • Xin Chen

    (South China University of Technology)

  • Yucheng Dong

    (Business School, Sichuan University)

  • Francisco Chiclana

    (De Montfort University
    University of Granada)

Abstract

In group decision making, it is sensible to achive minimum consensus cost (MCC) because the consensus reaching process resources are often limited. In this endeavour, though, there are still two issues that require paying attention to: (1) the impact of decision rules, including decision weights and aggregation functions, on MCC; and (2) the impact of non-cooperative behaviors on MCC. Hence, this paper analytically reveals the decision rules to minimize MCC or maximize MCC. Furthermore, detailed simulation experiments show the joint impact of non-cooperative behavior and decisions rules on MCC, as well as revealing the effect of the consensus within the established MCC target.

Suggested Citation

  • Weijun Xu & Xin Chen & Yucheng Dong & Francisco Chiclana, 2021. "Impact of Decision Rules and Non-cooperative Behaviors on Minimum Consensus Cost in Group Decision Making," Group Decision and Negotiation, Springer, vol. 30(6), pages 1239-1260, December.
  • Handle: RePEc:spr:grdene:v:30:y:2021:i:6:d:10.1007_s10726-020-09653-7
    DOI: 10.1007/s10726-020-09653-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10726-020-09653-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10726-020-09653-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Dong & Zhou, Zhili & Cheng, Faxin & Zhou, Yanfang & Xie, Yujing, 2018. "Modeling the minimum cost consensus problem in an asymmetric costs context," European Journal of Operational Research, Elsevier, vol. 270(3), pages 1122-1137.
    2. Yucheng Dong & Jiuping Xu, 2016. "Consensus Building in Group Decision Making," Springer Books, Springer, number 978-981-287-892-2, September.
    3. Ogryczak, Wlodzimierz & Sliwinski, Tomasz, 2003. "On solving linear programs with the ordered weighted averaging objective," European Journal of Operational Research, Elsevier, vol. 148(1), pages 80-91, July.
    4. Dong, Yucheng & Xu, Yinfeng & Li, Hongyi & Feng, Bo, 2010. "The OWA-based consensus operator under linguistic representation models using position indexes," European Journal of Operational Research, Elsevier, vol. 203(2), pages 455-463, June.
    5. Zaiwu Gong & Chao Xu & Francisco Chiclana & Xiaoxia Xu, 2017. "Consensus Measure with Multi-stage Fluctuation Utility Based on China’s Urban Demolition Negotiation," Group Decision and Negotiation, Springer, vol. 26(2), pages 379-407, March.
    6. Yager, Ronald R., 2002. "Defending against strategic manipulation in uninorm-based multi-agent decision making," European Journal of Operational Research, Elsevier, vol. 141(1), pages 217-232, August.
    7. Yucheng Dong & Cong-Cong Li & Yinfeng Xu & Xin Gu, 2015. "Consensus-Based Group Decision Making Under Multi-granular Unbalanced 2-Tuple Linguistic Preference Relations," Group Decision and Negotiation, Springer, vol. 24(2), pages 217-242, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tiantian Gai & Mingshuo Cao & Francisco Chiclana & Zhen Zhang & Yucheng Dong & Enrique Herrera-Viedma & Jian Wu, 2023. "Consensus-trust Driven Bidirectional Feedback Mechanism for Improving Consensus in Social Network Large-group Decision Making," Group Decision and Negotiation, Springer, vol. 32(1), pages 45-74, February.
    2. Xiao Tan & Jianjun Zhu & Tong Wu, 2022. "Dynamic Reference Point-Oriented Consensus Mechanism in Linguistic Distribution Group Decision Making Restricted by Quantum Integration of Information," Group Decision and Negotiation, Springer, vol. 31(2), pages 491-528, April.
    3. Ziqi Wu & Kai Zhu & Shaojian Qu, 2022. "Distributionally Robust Optimization Model for a Minimum Cost Consensus with Asymmetric Adjustment Costs Based on the Wasserstein Metric," Mathematics, MDPI, vol. 10(22), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hengjie & Dong, Yucheng & Chiclana, Francisco & Yu, Shui, 2019. "Consensus efficiency in group decision making: A comprehensive comparative study and its optimal design," European Journal of Operational Research, Elsevier, vol. 275(2), pages 580-598.
    2. Zhang, Bowen & Dong, Yucheng & Zhang, Hengjie & Pedrycz, Witold, 2020. "Consensus mechanism with maximum-return modifications and minimum-cost feedback: A perspective of game theory," European Journal of Operational Research, Elsevier, vol. 287(2), pages 546-559.
    3. Shaojian Qu & Yefan Han & Zhong Wu & Hassan Raza, 2021. "Consensus Modeling with Asymmetric Cost Based on Data-Driven Robust Optimization," Group Decision and Negotiation, Springer, vol. 30(6), pages 1395-1432, December.
    4. Cheng, Dong & Yuan, Yuxiang & Wu, Yong & Hao, Tiantian & Cheng, Faxin, 2022. "Maximum satisfaction consensus with budget constraints considering individual tolerance and compromise limit behaviors," European Journal of Operational Research, Elsevier, vol. 297(1), pages 221-238.
    5. Guo, Weiwei & Gong, Zaiwu & Zhang, Wei-Guo & Xu, Yanxin, 2023. "Minimum cost consensus modeling under dynamic feedback regulation mechanism considering consensus principle and tolerance level," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1279-1295.
    6. Wenqi Liu & Hengjie Zhang & Haiming Liang & Cong-cong Li & Yucheng Dong, 2022. "Managing Consistency and Consensus Issues in Group Decision-Making with Self-Confident Additive Preference Relations and Without Feedback: A Nonlinear Optimization Method," Group Decision and Negotiation, Springer, vol. 31(1), pages 213-240, February.
    7. Yan, Hong-Bin & Ma, Tieju & Huynh, Van-Nam, 2017. "On qualitative multi-attribute group decision making and its consensus measure: A probability based perspective," Omega, Elsevier, vol. 70(C), pages 94-117.
    8. Xiangrui Chao & Yucheng Dong & Gang Kou & Yi Peng, 2022. "How to determine the consensus threshold in group decision making: a method based on efficiency benchmark using benefit and cost insight," Annals of Operations Research, Springer, vol. 316(1), pages 143-177, September.
    9. Bowen Zhang & Yucheng Dong & Enrique Herrera-Viedma, 2019. "Group Decision Making with Heterogeneous Preference Structures: An Automatic Mechanism to Support Consensus Reaching," Group Decision and Negotiation, Springer, vol. 28(3), pages 585-617, June.
    10. Zhang, Huanhuan & Kou, Gang & Peng, Yi, 2019. "Soft consensus cost models for group decision making and economic interpretations," European Journal of Operational Research, Elsevier, vol. 277(3), pages 964-980.
    11. Mingwei Wang & Decui Liang & Zeshui Xu & Wen Cao, 2022. "Consensus reaching with the externality effect of social network for three-way group decisions," Annals of Operations Research, Springer, vol. 315(2), pages 707-745, August.
    12. Ying Ji & Huanhuan Li & Huijie Zhang, 2022. "Risk-Averse Two-Stage Stochastic Minimum Cost Consensus Models with Asymmetric Adjustment Cost," Group Decision and Negotiation, Springer, vol. 31(2), pages 261-291, April.
    13. Meng, Fan-Yong & Gong, Zai-Wu & Pedrycz, Witold & Chu, Jun-Fei, 2023. "Selfish-dilemma consensus analysis for group decision making in the perspective of cooperative game theory," European Journal of Operational Research, Elsevier, vol. 308(1), pages 290-305.
    14. Vitalii Antoshchuk & Volodymyr Filippov & Varvara Kuvaieva, 2021. "Development of methodological support for improving the quality of expert assessment of business processes," Technology audit and production reserves, Socionet;Technology audit and production reserves, vol. 1(4(57)), pages 22-27.
    15. Karsu, Özlem & Morton, Alec, 2015. "Inequity averse optimization in operational research," European Journal of Operational Research, Elsevier, vol. 245(2), pages 343-359.
    16. Manuel E. SANSALVADOR & José M. BROTONS, 2017. "The Application of OWAs in Expertise Processes: The Development of a Model for the Quantification of Hidden Quality Costs," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 51(3), pages 73-90.
    17. González-Arteaga, T. & Alcantud, J.C.R. & de Andrés Calle, R., 2016. "A cardinal dissensus measure based on the Mahalanobis distance," European Journal of Operational Research, Elsevier, vol. 251(2), pages 575-585.
    18. Argyris, Nikolaos & Karsu, Özlem & Yavuz, Mirel, 2022. "Fair resource allocation: Using welfare-based dominance constraints," European Journal of Operational Research, Elsevier, vol. 297(2), pages 560-578.
    19. Gong, Zaiwu & Guo, Weiwei & Słowiński, Roman, 2021. "Transaction and interaction behavior-based consensus model and its application to optimal carbon emission reduction," Omega, Elsevier, vol. 104(C).
    20. Fu, Chao & Yang, Shanlin, 2011. "An attribute weight based feedback model for multiple attributive group decision analysis problems with group consensus requirements in evidential reasoning context," European Journal of Operational Research, Elsevier, vol. 212(1), pages 179-189, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:30:y:2021:i:6:d:10.1007_s10726-020-09653-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.