IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v32y2020i2d10.1007_s10696-019-09341-y.html
   My bibliography  Save this article

Comparison of optimal buffer allocation in flow lines under installation buffer, echelon buffer, and CONWIP policies

Author

Listed:
  • George Liberopoulos

    (University of Thessaly)

Abstract

We compare the optimal buffer allocation of a manufacturing flow line operating under three different production control policies: installation buffer (IB), echelon buffer (EB), and CONWIP (CW). IB is the conventional policy where each machine may store the parts that it produces only in its immediate downstream buffer if the next machine is occupied. EB is a more flexible policy where each machine may store the parts that it produces in any of its downstream buffers. CW is a special case of EB where the capacities of all buffers, except the last one, are zero. The optimization problem that we consider is to maximize the average gross profit (AGP) minus the average cost (AC), subject to a minimum average throughput constraint. AGP is defined as the average throughput of the line weighted by the gross marginal profit (selling price minus production cost per part), and AC is the sum of the average WIP plus total buffer capacity plus transfer rate of parts to remote buffers, weighted by the inventory holding cost rate, the cost of storage space, and the marginal cost of transferring parts to remote buffers, respectively. Numerical results show that the optimal EB policy generally outperforms the optimal IB and CW policies. They also show that as the production rates of the machines decrease, the relative advantage in performance of the EB policy over the other two policies increases. When the cost of transferring parts to remote buffers increases, the dominance of the EB policy over the IB policy decreases while the dominance of the EB policy over CW increases.

Suggested Citation

  • George Liberopoulos, 2020. "Comparison of optimal buffer allocation in flow lines under installation buffer, echelon buffer, and CONWIP policies," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 297-365, June.
  • Handle: RePEc:spr:flsman:v:32:y:2020:i:2:d:10.1007_s10696-019-09341-y
    DOI: 10.1007/s10696-019-09341-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-019-09341-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-019-09341-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stefan Helber & Katja Schimmelpfeng & Raik Stolletz & Svenja Lagershausen, 2011. "Using linear programming to analyze and optimize stochastic flow lines," Annals of Operations Research, Springer, vol. 182(1), pages 193-211, January.
    2. Alfieri, Arianna & Matta, Andrea, 2013. "Mathematical programming time-based decomposition algorithm for discrete event simulation," European Journal of Operational Research, Elsevier, vol. 231(3), pages 557-566.
    3. Stanley Gershwin & James Schor, 2000. "Efficient algorithms for buffer space allocation," Annals of Operations Research, Springer, vol. 93(1), pages 117-144, January.
    4. Jingshan Li & Semyon Meerkov, 2000. "Production variability in manufacturing systems: Bernoulli reliability case," Annals of Operations Research, Springer, vol. 93(1), pages 299-324, January.
    5. J. MacGregor Smith & Sophia Daskalaki, 1988. "Buffer Space Allocation in Automated Assembly Lines," Operations Research, INFORMS, vol. 36(2), pages 343-358, April.
    6. Shi, Chuan & Gershwin, Stanley B., 2009. "An efficient buffer design algorithm for production line profit maximization," International Journal of Production Economics, Elsevier, vol. 122(2), pages 725-740, December.
    7. George Liberopoulos & Yves Dallery, 2000. "A unified framework for pull control mechanisms in multi‐stage manufacturing systems," Annals of Operations Research, Springer, vol. 93(1), pages 325-355, January.
    8. Semyon Meerkov & Liang Zhang, 2011. "Bernoulli production lines with quality-quantity coupling machines: monotonicity properties and bottlenecks," Annals of Operations Research, Springer, vol. 182(1), pages 119-131, January.
    9. Lavoie, P. & Gharbi, A. & Kenné, J.-P., 2010. "A comparative study of pull control mechanisms for unreliable homogenous transfer lines," International Journal of Production Economics, Elsevier, vol. 124(1), pages 241-251, March.
    10. Wai Kin (Victor) Chan & Lee Schruben, 2008. "Optimization Models of Discrete-Event System Dynamics," Operations Research, INFORMS, vol. 56(5), pages 1218-1237, October.
    11. George Liberopoulos, 2018. "Performance evaluation of a production line operated under an echelon buffer policy," IISE Transactions, Taylor & Francis Journals, vol. 50(3), pages 161-177, March.
    12. Bariş Tan, 2015. "Mathematical programming representations of the dynamics of continuous-flow production systems," IISE Transactions, Taylor & Francis Journals, vol. 47(2), pages 173-189, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefan Haeussler & Philipp Neuner & Matthias Thürer, 2023. "Balancing earliness and tardiness within workload control order release: an assessment by simulation," Flexible Services and Manufacturing Journal, Springer, vol. 35(2), pages 487-508, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Göttlich & S. Kühn & J. A. Schwarz & R. Stolletz, 2016. "Approximations of time-dependent unreliable flow lines with finite buffers," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(3), pages 295-323, June.
    2. Nahas, Nabil & Nourelfath, Mustapha & Gendreau, Michel, 2014. "Selecting machines and buffers in unreliable assembly/disassembly manufacturing networks," International Journal of Production Economics, Elsevier, vol. 154(C), pages 113-126.
    3. Alfieri, Arianna & Matta, Andrea, 2012. "Mathematical programming formulations for approximate simulation of multistage production systems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 773-783.
    4. Guan Wang & Yang Woo Shin & Dug Hee Moon, 2016. "Comparison of three flow line layouts with unreliable machines and profit maximization," Flexible Services and Manufacturing Journal, Springer, vol. 28(4), pages 669-693, December.
    5. Ziwei Lin & Nicla Frigerio & Andrea Matta & Shichang Du, 2021. "Multi-fidelity surrogate-based optimization for decomposed buffer allocation problems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 223-253, March.
    6. Bengisu Urlu & Nesim K. Erkip, 2020. "Safety stock placement for serial systems under supply process uncertainty," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 395-424, June.
    7. Cruz, F.R.B. & Van Woensel, T. & Smith, J. MacGregor, 2010. "Buffer and throughput trade-offs in M/G/1/K queueing networks: A bi-criteria approach," International Journal of Production Economics, Elsevier, vol. 125(2), pages 224-234, June.
    8. Kolb, Oliver & Göttlich, Simone, 2015. "A continuous buffer allocation model using stochastic processes," European Journal of Operational Research, Elsevier, vol. 242(3), pages 865-874.
    9. Elisa Gebennini & Andrea Grassi & Cesare Fantuzzi, 2015. "The two-machine one-buffer continuous time model with restart policy," Annals of Operations Research, Springer, vol. 231(1), pages 33-64, August.
    10. Khayyati, Siamak & Tan, Barış, 2020. "Data-driven control of a production system by using marking-dependent threshold policy," International Journal of Production Economics, Elsevier, vol. 226(C).
    11. Stefan Helber & Katja Schimmelpfeng & Raik Stolletz & Svenja Lagershausen, 2011. "Using linear programming to analyze and optimize stochastic flow lines," Annals of Operations Research, Springer, vol. 182(1), pages 193-211, January.
    12. Matthias Thürer & Nuno O. Fernandes & Mark Stevenson & Cristovao Silva & Silvio Carmo-Silva, 2019. "POLC-A: an assessment of POLCA’s authorization element," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2435-2447, August.
    13. Hlioui, Rached & Gharbi, Ali & Hajji, Adnène, 2015. "Replenishment, production and quality control strategies in three-stage supply chain," International Journal of Production Economics, Elsevier, vol. 166(C), pages 90-102.
    14. Xiang Zhong & Jie Song & Jingshan Li & Susan M. Ertl & Lauren Fiedler, 2016. "Design and analysis of gastroenterology (GI) clinic in Digestive Health Center of University of Wisconsin Health," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 90-119, June.
    15. Hlioui, Rached & Gharbi, Ali & Hajji, Adnène, 2017. "Joint supplier selection, production and replenishment of an unreliable manufacturing-oriented supply chain," International Journal of Production Economics, Elsevier, vol. 187(C), pages 53-67.
    16. Arianna Alfieri & Andrea Matta & Giulia Pedrielli, 2015. "Mathematical programming models for joint simulation–optimization applied to closed queueing networks," Annals of Operations Research, Springer, vol. 231(1), pages 105-127, August.
    17. Juliane Müller & Christine Shoemaker & Robert Piché, 2014. "SO-I: a surrogate model algorithm for expensive nonlinear integer programming problems including global optimization applications," Journal of Global Optimization, Springer, vol. 59(4), pages 865-889, August.
    18. Kumar Satyam & Ananth Krishnamurthy, 2013. "Performance analysis of CONWIP systems with batch size constraints," Annals of Operations Research, Springer, vol. 209(1), pages 85-114, October.
    19. Cigdem Gurgur, 2013. "Optimal configuration of a decentralized, market-driven production/inventory system," Annals of Operations Research, Springer, vol. 209(1), pages 139-157, October.
    20. Azaron, Amir & Katagiri, Hideki & Kato, Kosuke & Sakawa, Masatoshi, 2006. "Modelling complex assemblies as a queueing network for lead time control," European Journal of Operational Research, Elsevier, vol. 174(1), pages 150-168, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:32:y:2020:i:2:d:10.1007_s10696-019-09341-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.