IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v23y2019i3d10.1007_s00780-019-00392-5.html
   My bibliography  Save this article

Affine forward variance models

Author

Listed:
  • Jim Gatheral

    (CUNY)

  • Martin Keller-Ressel

    (TU Dresden)

Abstract

We introduce the class of affine forward variance (AFV) models of which both the conventional Heston model and the rough Heston model are special cases. We show that AFV models can be characterised by the affine form of their cumulant-generating function, which can be obtained as solution of a convolution Riccati equation. We further introduce the class of affine forward order flow intensity (AFI) models, which are structurally similar to AFV models, but driven by jump processes, and which include Hawkes-type models. We show that the cumulant-generating function of an AFI model satisfies a generalised convolution Riccati equation and that a high-frequency limit of AFI models converges in distribution to an AFV model.

Suggested Citation

  • Jim Gatheral & Martin Keller-Ressel, 2019. "Affine forward variance models," Finance and Stochastics, Springer, vol. 23(3), pages 501-533, July.
  • Handle: RePEc:spr:finsto:v:23:y:2019:i:3:d:10.1007_s00780-019-00392-5
    DOI: 10.1007/s00780-019-00392-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00780-019-00392-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00780-019-00392-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abi Jaber, Eduardo & El Euch, Omar, 2019. "Markovian structure of the Volterra Heston model," Statistics & Probability Letters, Elsevier, vol. 149(C), pages 63-72.
    2. Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592, arXiv.org, revised May 2015.
    3. Thibault Jaisson & Mathieu Rosenbaum, 2013. "Limit theorems for nearly unstable Hawkes processes," Papers 1310.2033, arXiv.org, revised Mar 2015.
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    5. Omar El Euch & Mathieu Rosenbaum, 2019. "The characteristic function of rough Heston models," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 3-38, January.
    6. H. J. Haubold & A. M. Mathai & R. K. Saxena, 2011. "Mittag-Leffler Functions and Their Applications," Journal of Applied Mathematics, Hindawi, vol. 2011, pages 1-51, May.
    7. Eduardo Abi Jaber & Omar El Euch, 2019. "Markovian structure of the Volterra Heston model," Post-Print hal-01716696, HAL.
    8. Omar Euch & Masaaki Fukasawa & Mathieu Rosenbaum, 2018. "The microstructural foundations of leverage effect and rough volatility," Finance and Stochastics, Springer, vol. 22(2), pages 241-280, April.
    9. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1992. "Stock Prices and Volume," The Review of Financial Studies, Society for Financial Studies, vol. 5(2), pages 199-242.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingtang Ma & Wensheng Yang & Zhenyu Cui, 2021. "Semimartingale and continuous-time Markov chain approximation for rough stochastic local volatility models," Papers 2110.08320, arXiv.org, revised Oct 2021.
    2. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Papers 2210.12393, arXiv.org.
    3. Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2021. "American options in the Volterra Heston model," Working Papers hal-03178306, HAL.
    4. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Working Papers hal-03827332, HAL.
    5. Ulrich Horst & Wei Xu & Rouyi Zhang, 2023. "Convergence of Heavy-Tailed Hawkes Processes and the Microstructure of Rough Volatility," Papers 2312.08784, arXiv.org.
    6. Ulrich Horst & Wei Xu, 2019. "The Microstructure of Stochastic Volatility Models with Self-Exciting Jump Dynamics," Papers 1911.12969, arXiv.org.
    7. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    8. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    9. Paul Jusselin & Mathieu Rosenbaum, 2020. "No‐arbitrage implies power‐law market impact and rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1309-1336, October.
    10. Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2021. "The Alpha‐Heston stochastic volatility model," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 943-978, July.
    11. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Post-Print hal-02946146, HAL.
    12. Jim Gatheral & Martin Keller-Ressel, 2018. "Affine forward variance models," Papers 1801.06416, arXiv.org, revised Oct 2018.
    13. Ackermann, Julia & Kruse, Thomas & Overbeck, Ludger, 2022. "Inhomogeneous affine Volterra processes," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 250-279.
    14. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02946146, HAL.
    15. Guanxing Fu & Ulrich Horst & Xiaonyu Xia, 2022. "Portfolio liquidation games with self‐exciting order flow," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 1020-1065, October.
    16. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    17. Christa Cuchiero & Sara Svaluto-Ferro, 2021. "Infinite-dimensional polynomial processes," Finance and Stochastics, Springer, vol. 25(2), pages 383-426, April.
    18. Omar Euch & Masaaki Fukasawa & Mathieu Rosenbaum, 2018. "The microstructural foundations of leverage effect and rough volatility," Finance and Stochastics, Springer, vol. 22(2), pages 241-280, April.
    19. Bingyan Han & Hoi Ying Wong, 2019. "Mean-variance portfolio selection under Volterra Heston model," Papers 1904.12442, arXiv.org, revised Jan 2020.
    20. Christa Cuchiero & Sara Svaluto-Ferro, 2019. "Infinite dimensional polynomial processes," Papers 1911.02614, arXiv.org.

    More about this item

    Keywords

    Stochastic volatility; Rough volatility; Riccati equation; Affine process; Hawkes process;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:23:y:2019:i:3:d:10.1007_s00780-019-00392-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.