IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1911.02614.html
   My bibliography  Save this paper

Infinite dimensional polynomial processes

Author

Listed:
  • Christa Cuchiero
  • Sara Svaluto-Ferro

Abstract

We introduce polynomial processes taking values in an arbitrary Banach space $B$ via their infinitesimal generator $L$ and the associated martingale problem. We obtain two representations of the (conditional) moments in terms of solutions of a system of ODEs on the truncated tensor algebra of dual respectively bidual spaces. We illustrate how the well-known moment formulas for finite dimensional or probability-measure valued polynomial processes can be deduced in this general framework. As an application we consider polynomial forward variance curve models which appear in particular as Markovian lifts of (rough) Bergomi-type volatility models. Moreover, we show that the signature process of a $d$-dimensional Brownian motion is polynomial and derive its expected value via the polynomial approach.

Suggested Citation

  • Christa Cuchiero & Sara Svaluto-Ferro, 2019. "Infinite dimensional polynomial processes," Papers 1911.02614, arXiv.org.
  • Handle: RePEc:arx:papers:1911.02614
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1911.02614
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abi Jaber, Eduardo & El Euch, Omar, 2019. "Markovian structure of the Volterra Heston model," Statistics & Probability Letters, Elsevier, vol. 149(C), pages 63-72.
    2. Biagini, Francesca & Zhang, Yinglin, 2016. "Polynomial diffusion models for life insurance liabilities," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 114-129.
    3. Filipović, Damir & Gourier, Elise & Mancini, Loriano, 2016. "Quadratic variance swap models," Journal of Financial Economics, Elsevier, vol. 119(1), pages 44-68.
    4. Ahdida, Abdelkoddousse & Alfonsi, Aurélien, 2013. "A mean-reverting SDE on correlation matrices," Stochastic Processes and their Applications, Elsevier, vol. 123(4), pages 1472-1520.
    5. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
    6. Christa Cuchiero & Josef Teichmann, 2019. "Markovian lifts of positive semidefinite affine Volterra-type processes," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 407-448, December.
    7. Hans Buehler, 2006. "Consistent Variance Curve Models," Finance and Stochastics, Springer, vol. 10(2), pages 178-203, April.
    8. Christa Cuchiero & Martin Keller-Ressel & Josef Teichmann, 2012. "Polynomial processes and their applications to mathematical finance," Finance and Stochastics, Springer, vol. 16(4), pages 711-740, October.
    9. Elisa Alòs & Jorge León & Josep Vives, 2007. "On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility," Finance and Stochastics, Springer, vol. 11(4), pages 571-589, October.
    10. Damien Ackerer & Damir Filipovi'c, 2016. "Linear Credit Risk Models," Papers 1605.07419, arXiv.org, revised Jul 2019.
    11. Eduardo Abi Jaber & Omar El Euch, 2019. "Markovian structure of the Volterra Heston model," Post-Print hal-01716696, HAL.
    12. Fred Espen Benth & Paul Kruhner, 2014. "Representation of infinite dimensional forward price models in commodity markets," Papers 1403.4111, arXiv.org.
    13. Omar El Euch & Mathieu Rosenbaum, 2019. "The characteristic function of rough Heston models," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 3-38, January.
    14. Christa Cuchiero & Josef Teichmann, 2019. "Markovian lifts of positive semidefinite affine Volterra type processes," Papers 1907.01917, arXiv.org, revised Sep 2019.
    15. Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
    16. Cuchiero, Christa, 2019. "Polynomial processes in stochastic portfolio theory," Stochastic Processes and their Applications, Elsevier, vol. 129(5), pages 1829-1872.
    17. Abdelkoddousse Ahdida & Aurélien Alfonsi, 2013. "A Mean-Reverting SDE on Correlation matrices," Post-Print hal-00617111, HAL.
    18. Hans Buehler, 2006. "Consistent Variance Curve Models," Finance and Stochastics, Springer, vol. 10(2), pages 178-203, April.
    19. Damir Filipović & Martin Larsson, 2016. "Polynomial diffusions and applications in finance," Finance and Stochastics, Springer, vol. 20(4), pages 931-972, October.
    20. Damir Filipović & Martin Larsson, 2017. "Polynomial Jump-Diffusion Models," Swiss Finance Institute Research Paper Series 17-60, Swiss Finance Institute.
    21. Francesca Biagini & Yinglin Zhang, 2016. "Polynomial Diffusion Models for Life Insurance Liabilities," Papers 1602.07910, arXiv.org, revised Sep 2016.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christa Cuchiero & Sara Svaluto-Ferro, 2021. "Infinite-dimensional polynomial processes," Finance and Stochastics, Springer, vol. 25(2), pages 383-426, April.
    2. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    3. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    4. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Post-Print hal-02946146, HAL.
    5. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02946146, HAL.
    6. M.E. Mancino & S. Scotti & G. Toscano, 2020. "Is the Variance Swap Rate Affine in the Spot Variance? Evidence from S&P500 Data," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(4), pages 288-316, July.
    7. Filipović, Damir & Larsson, Martin & Pulido, Sergio, 2020. "Markov cubature rules for polynomial processes," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 1947-1971.
    8. Christa Cuchiero & Francesco Guida & Luca di Persio & Sara Svaluto-Ferro, 2021. "Measure-valued affine and polynomial diffusions," Papers 2112.15129, arXiv.org.
    9. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Papers 2210.12393, arXiv.org.
    10. Damir Filipovi'c & Martin Larsson & Sergio Pulido, 2017. "Markov cubature rules for polynomial processes," Papers 1707.06849, arXiv.org, revised Jun 2019.
    11. Christa Cuchiero & Josef Teichmann, 2019. "Markovian lifts of positive semidefinite affine Volterra-type processes," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 407-448, December.
    12. Christa Cuchiero & Sara Svaluto-Ferro & Josef Teichmann, 2023. "Signature SDEs from an affine and polynomial perspective," Papers 2302.01362, arXiv.org.
    13. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Working Papers hal-03827332, HAL.
    14. Eduardo Abi Jaber, 2020. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Papers 2009.10972, arXiv.org, revised May 2022.
    15. Ackermann, Julia & Kruse, Thomas & Overbeck, Ludger, 2022. "Inhomogeneous affine Volterra processes," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 250-279.
    16. Christa Cuchiero, 2017. "Polynomial processes in stochastic portfolio theory," Papers 1705.03647, arXiv.org.
    17. Christa Cuchiero & Martin Larsson & Sara Svaluto-Ferro, 2018. "Probability measure-valued polynomial diffusions," Papers 1807.03229, arXiv.org.
    18. Jingtang Ma & Wensheng Yang & Zhenyu Cui, 2021. "Semimartingale and continuous-time Markov chain approximation for rough stochastic local volatility models," Papers 2110.08320, arXiv.org, revised Oct 2021.
    19. Cuchiero, Christa, 2019. "Polynomial processes in stochastic portfolio theory," Stochastic Processes and their Applications, Elsevier, vol. 129(5), pages 1829-1872.
    20. Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2021. "American options in the Volterra Heston model," Working Papers hal-03178306, HAL.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1911.02614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.