IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v78y2021i3d10.1007_s10589-020-00261-4.html
   My bibliography  Save this article

A strictly contractive Peaceman-Rachford splitting method for the doubly nonnegative relaxation of the minimum cut problem

Author

Listed:
  • Xinxin Li

    (Jilin University)

  • Ting Kei Pong

    (The Hong Kong Polytechnic University)

  • Hao Sun

    (University of Waterloo)

  • Henry Wolkowicz

    (University of Waterloo)

Abstract

The minimum cut problem, MC, and the special case of the vertex separator problem, consists in partitioning the set of nodes of a graph G into k subsets of given sizes in order to minimize the number of edges cut after removing the k-th set. Previous work on approximate solutions uses, in increasing strength and expense: eigenvalue, semidefinite programming, SDP, and doubly nonnegative, DNN, bounding techniques. In this paper, we derive strengthened SDP and DNN relaxations, and we propose a scalable algorithmic approach for efficiently evaluating, theoretically verifiable, both upper and lower bounds. Our stronger relaxations are based on a new gangster set, and we demonstrate how facial reduction, FR, fits in well to allow for regularized relaxations. Moreover, the FR appears to be perfectly well suited for a natural splitting of variables, and thus for the application of splitting methods. Here, we adopt the strictly contractive Peaceman-Rachford splitting method, sPRSM. Further, we bring useful redundant constraints back into the subproblems, and show empirically that this accelerates sPRSM.In addition, we employ new strategies for obtaining lower bounds and upper bounds of the optimal value of MC from approximate iterates of the sPRSM thus aiding in early termination of the algorithm. We compare our approach with others in the literature on random datasets and vertex separator problems. This illustrates the efficiency and robustness of our proposed method.

Suggested Citation

  • Xinxin Li & Ting Kei Pong & Hao Sun & Henry Wolkowicz, 2021. "A strictly contractive Peaceman-Rachford splitting method for the doubly nonnegative relaxation of the minimum cut problem," Computational Optimization and Applications, Springer, vol. 78(3), pages 853-891, April.
  • Handle: RePEc:spr:coopap:v:78:y:2021:i:3:d:10.1007_s10589-020-00261-4
    DOI: 10.1007/s10589-020-00261-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-020-00261-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-020-00261-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bernard Chazelle & Carl Kingsford & Mona Singh, 2004. "A Semidefinite Programming Approach to Side Chain Positioning with New Rounding Strategies," INFORMS Journal on Computing, INFORMS, vol. 16(4), pages 380-392, November.
    2. Ting Pong & Hao Sun & Ningchuan Wang & Henry Wolkowicz, 2016. "Eigenvalue, quadratic programming, and semidefinite programming relaxations for a cut minimization problem," Computational Optimization and Applications, Springer, vol. 63(2), pages 333-364, March.
    3. Stephen M. Robinson, 1976. "Regularity and Stability for Convex Multivalued Functions," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 130-143, May.
    4. William W. Hager & James T. Hungerford & Ilya Safro, 2018. "A multilevel bilinear programming algorithm for the vertex separator problem," Computational Optimization and Applications, Springer, vol. 69(1), pages 189-223, January.
    5. Fanz Rendl & Renata Sotirov, 2018. "The min-cut and vertex separator problem," Computational Optimization and Applications, Springer, vol. 69(1), pages 159-187, January.
    6. Mohamed Didi Biha & Marie-Jean Meurs, 2011. "An exact algorithm for solving the vertex separator problem," Journal of Global Optimization, Springer, vol. 49(3), pages 425-434, March.
    7. Qing Zhao & Stefan E. Karisch & Franz Rendl & Henry Wolkowicz, 1998. "Semidefinite Programming Relaxations for the Quadratic Assignment Problem," Journal of Combinatorial Optimization, Springer, vol. 2(1), pages 71-109, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Hao & Sotirov, Renata & Wolkowicz, Henry, 2023. "Facial reduction for symmetry reduced semidefinite and doubly nonnegative programs," Other publications TiSEM 8dd3dbae-58fd-4238-b786-e, Tilburg University, School of Economics and Management.
    2. Naomi Graham & Hao Hu & Jiyoung Im & Xinxin Li & Henry Wolkowicz, 2022. "A Restricted Dual Peaceman-Rachford Splitting Method for a Strengthened DNN Relaxation for QAP," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2125-2143, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fanz Rendl & Renata Sotirov, 2018. "The min-cut and vertex separator problem," Computational Optimization and Applications, Springer, vol. 69(1), pages 159-187, January.
    2. Hu, Hao & Sotirov, Renata & Wolkowicz, Henry, 2023. "Facial reduction for symmetry reduced semidefinite and doubly nonnegative programs," Other publications TiSEM 8dd3dbae-58fd-4238-b786-e, Tilburg University, School of Economics and Management.
    3. Norberto Castillo-García & Paula Hernández Hernández, 2019. "Two new integer linear programming formulations for the vertex bisection problem," Computational Optimization and Applications, Springer, vol. 74(3), pages 895-918, December.
    4. Forbes Burkowski & Yuen-Lam Cheung & Henry Wolkowicz, 2014. "Efficient Use of Semidefinite Programming for Selection of Rotamers in Protein Conformations," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 748-766, November.
    5. Ting Pong & Hao Sun & Ningchuan Wang & Henry Wolkowicz, 2016. "Eigenvalue, quadratic programming, and semidefinite programming relaxations for a cut minimization problem," Computational Optimization and Applications, Springer, vol. 63(2), pages 333-364, March.
    6. P. Q. Khanh & N. M. Tung, 2015. "Second-Order Optimality Conditions with the Envelope-Like Effect for Set-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 68-90, October.
    7. Bin Fu & Zhixiang Chen, 2008. "Sublinear time width-bounded separators and their application to the protein side-chain packing problem," Journal of Combinatorial Optimization, Springer, vol. 15(4), pages 387-407, May.
    8. Michele Garraffa & Federico Della Croce & Fabio Salassa, 2017. "An exact semidefinite programming approach for the max-mean dispersion problem," Journal of Combinatorial Optimization, Springer, vol. 34(1), pages 71-93, July.
    9. de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2007. "On Semidefinite Programming Relaxations of the Travelling Salesman Problem (Replaced by DP 2008-96)," Discussion Paper 2007-101, Tilburg University, Center for Economic Research.
    10. Nguyen Minh Tung & Nguyen Xuan Duy Bao, 2023. "New Set-Valued Directional Derivatives: Calculus and Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 411-437, May.
    11. A. S. Lewis, 2004. "The Structured Distance to Ill-Posedness for Conic Systems," Mathematics of Operations Research, INFORMS, vol. 29(4), pages 776-785, November.
    12. Kung Fu Ng & Xi Yin Zheng, 2004. "Characterizations of Error Bounds for Convex Multifunctions on Banach Spaces," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 45-63, February.
    13. Hu, Hao, 2019. "The quadratic shortest path problem : Theory and computations," Other publications TiSEM 2affb54f-da41-461b-9782-d, Tilburg University, School of Economics and Management.
    14. C. Zălinescu, 2003. "A Nonlinear Extension of Hoffman's Error Bounds for Linear Inequalities," Mathematics of Operations Research, INFORMS, vol. 28(3), pages 524-532, August.
    15. E. R. van Dam & R. Sotirov, 2015. "On Bounding the Bandwidth of Graphs with Symmetry," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 75-88, February.
    16. Phan Quoc Khanh & Nguyen Minh Tung, 2016. "Second-Order Conditions for Open-Cone Minimizers and Firm Minimizers in Set-Valued Optimization Subject to Mixed Constraints," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 45-69, October.
    17. M. V. Dolgopolik, 2023. "DC semidefinite programming and cone constrained DC optimization II: local search methods," Computational Optimization and Applications, Springer, vol. 85(3), pages 993-1031, July.
    18. Godai Azuma & Mituhiro Fukuda & Sunyoung Kim & Makoto Yamashita, 2023. "Exact SDP relaxations for quadratic programs with bipartite graph structures," Journal of Global Optimization, Springer, vol. 86(3), pages 671-691, July.
    19. de Klerk, Etienne & -Nagy, Marianna E. & Sotirov, Renata & Truetsch, Uwe, 2014. "Symmetry in RLT-type relaxations for the quadratic assignment and standard quadratic optimization problems," European Journal of Operational Research, Elsevier, vol. 233(3), pages 488-499.
    20. Jiming Peng & Tao Zhu & Hezhi Luo & Kim-Chuan Toh, 2015. "Semi-definite programming relaxation of quadratic assignment problems based on nonredundant matrix splitting," Computational Optimization and Applications, Springer, vol. 60(1), pages 171-198, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:78:y:2021:i:3:d:10.1007_s10589-020-00261-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.