IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v63y2016i2p333-364.html
   My bibliography  Save this article

Eigenvalue, quadratic programming, and semidefinite programming relaxations for a cut minimization problem

Author

Listed:
  • Ting Pong
  • Hao Sun
  • Ningchuan Wang
  • Henry Wolkowicz

Abstract

We consider the problem of partitioning the node set of a graph into k sets of given sizes in order to minimize the cut obtained using (removing) the kth set. If the resulting cut has value 0, then we have obtained a vertex separator. This problem is closely related to the graph partitioning problem. In fact, the model we use is the same as that for the graph partitioning problem except for a different quadratic objective function. We look at known and new bounds obtained from various relaxations for this NP-hard problem. This includes: the standard eigenvalue bound, projected eigenvalue bounds using both the adjacency matrix and the Laplacian, quadratic programming (QP) bounds based on recent successful QP bounds for the quadratic assignment problems, and semidefinite programming bounds. We include numerical tests for large and huge problems that illustrate the efficiency of the bounds in terms of strength and time. Copyright Springer Science+Business Media New York 2016

Suggested Citation

  • Ting Pong & Hao Sun & Ningchuan Wang & Henry Wolkowicz, 2016. "Eigenvalue, quadratic programming, and semidefinite programming relaxations for a cut minimization problem," Computational Optimization and Applications, Springer, vol. 63(2), pages 333-364, March.
  • Handle: RePEc:spr:coopap:v:63:y:2016:i:2:p:333-364
    DOI: 10.1007/s10589-015-9779-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-015-9779-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-015-9779-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. W. Hadley & F. Rendl & H. Wolkowicz, 1992. "A New Lower Bound Via Projection for the Quadratic Assignment Problem," Mathematics of Operations Research, INFORMS, vol. 17(3), pages 727-739, August.
    2. Éva Tardos, 1986. "A Strongly Polynomial Algorithm to Solve Combinatorial Linear Programs," Operations Research, INFORMS, vol. 34(2), pages 250-256, April.
    3. Marti, Rafael & Campos, Vicente & Pinana, Estefania, 2008. "A branch and bound algorithm for the matrix bandwidth minimization," European Journal of Operational Research, Elsevier, vol. 186(2), pages 513-528, April.
    4. Qing Zhao & Stefan E. Karisch & Franz Rendl & Henry Wolkowicz, 1998. "Semidefinite Programming Relaxations for the Quadratic Assignment Problem," Journal of Combinatorial Optimization, Springer, vol. 2(1), pages 71-109, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Hao & Sotirov, Renata & Wolkowicz, Henry, 2023. "Facial reduction for symmetry reduced semidefinite and doubly nonnegative programs," Other publications TiSEM 8dd3dbae-58fd-4238-b786-e, Tilburg University, School of Economics and Management.
    2. Fanz Rendl & Renata Sotirov, 2018. "The min-cut and vertex separator problem," Computational Optimization and Applications, Springer, vol. 69(1), pages 159-187, January.
    3. Xinxin Li & Ting Kei Pong & Hao Sun & Henry Wolkowicz, 2021. "A strictly contractive Peaceman-Rachford splitting method for the doubly nonnegative relaxation of the minimum cut problem," Computational Optimization and Applications, Springer, vol. 78(3), pages 853-891, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiming Peng & Tao Zhu & Hezhi Luo & Kim-Chuan Toh, 2015. "Semi-definite programming relaxation of quadratic assignment problems based on nonredundant matrix splitting," Computational Optimization and Applications, Springer, vol. 60(1), pages 171-198, January.
    2. Yong Xia & Wajeb Gharibi, 2015. "On improving convex quadratic programming relaxation for the quadratic assignment problem," Journal of Combinatorial Optimization, Springer, vol. 30(3), pages 647-667, October.
    3. Loiola, Eliane Maria & de Abreu, Nair Maria Maia & Boaventura-Netto, Paulo Oswaldo & Hahn, Peter & Querido, Tania, 2007. "A survey for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 176(2), pages 657-690, January.
    4. Wolkowicz, Henry, 2002. "A note on lack of strong duality for quadratic problems with orthogonal constraints," European Journal of Operational Research, Elsevier, vol. 143(2), pages 356-364, December.
    5. Yichuan Ding & Henry Wolkowicz, 2009. "A Low-Dimensional Semidefinite Relaxation for the Quadratic Assignment Problem," Mathematics of Operations Research, INFORMS, vol. 34(4), pages 1008-1022, November.
    6. R. B. Bapat & S. K. Neogy, 2016. "On a quadratic programming problem involving distances in trees," Annals of Operations Research, Springer, vol. 243(1), pages 365-373, August.
    7. Amitai Armon & Iftah Gamzu & Danny Segev, 2014. "Mobile facility location: combinatorial filtering via weighted occupancy," Journal of Combinatorial Optimization, Springer, vol. 28(2), pages 358-375, August.
    8. Balaji Gopalakrishnan & Seunghyun Kong & Earl Barnes & Ellis Johnson & Joel Sokol, 2011. "A least-squares minimum-cost network flow algorithm," Annals of Operations Research, Springer, vol. 186(1), pages 119-140, June.
    9. Janez Povh, 2021. "On the Embed and Project Algorithm for the Graph Bandwidth Problem," Mathematics, MDPI, vol. 9(17), pages 1-15, August.
    10. Clemens Heuberger, 2004. "Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results," Journal of Combinatorial Optimization, Springer, vol. 8(3), pages 329-361, September.
    11. Michele Garraffa & Federico Della Croce & Fabio Salassa, 2017. "An exact semidefinite programming approach for the max-mean dispersion problem," Journal of Combinatorial Optimization, Springer, vol. 34(1), pages 71-93, July.
    12. de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2007. "On Semidefinite Programming Relaxations of the Travelling Salesman Problem (Replaced by DP 2008-96)," Discussion Paper 2007-101, Tilburg University, Center for Economic Research.
    13. Amitabh Basu & Jesús A. De Loera & Mark Junod, 2014. "On Chubanov's Method for Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 336-350, May.
    14. Juan Pantrigo & Rafael Martí & Abraham Duarte & Eduardo Pardo, 2012. "Scatter search for the cutwidth minimization problem," Annals of Operations Research, Springer, vol. 199(1), pages 285-304, October.
    15. László A. Végh, 2017. "A Strongly Polynomial Algorithm for Generalized Flow Maximization," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 179-211, January.
    16. Mao-Cheng Cai & Xiaoguang Yang & Yanjun Li, 1999. "Inverse Polymatroidal Flow Problem," Journal of Combinatorial Optimization, Springer, vol. 3(1), pages 115-126, July.
    17. Hu, Hao, 2019. "The quadratic shortest path problem : Theory and computations," Other publications TiSEM 2affb54f-da41-461b-9782-d, Tilburg University, School of Economics and Management.
    18. D. V. Gribanov & D. S. Malyshev & P. M. Pardalos & S. I. Veselov, 2018. "FPT-algorithms for some problems related to integer programming," Journal of Combinatorial Optimization, Springer, vol. 35(4), pages 1128-1146, May.
    19. M. Cai & X. Yang & Y. Li, 2000. "Inverse Problems of Submodular Functions on Digraphs," Journal of Optimization Theory and Applications, Springer, vol. 104(3), pages 559-575, March.
    20. Mădălina M. Drugan, 2015. "Generating QAP instances with known optimum solution and additively decomposable cost function," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 1138-1172, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:63:y:2016:i:2:p:333-364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.