IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v72y2019i1d10.1007_s10589-018-0029-8.html
   My bibliography  Save this article

On the optimal solution set in interval linear programming

Author

Listed:
  • Elif Garajová

    (Charles University)

  • Milan Hladík

    (Charles University)

Abstract

Determining the set of all optimal solutions of a linear program with interval data is one of the most challenging problems discussed in interval optimization. In this paper, we study the topological and geometric properties of the optimal set and examine sufficient conditions for its closedness, boundedness, connectedness and convexity. We also prove that testing boundedness is co-NP-hard for inequality-constrained problems with free variables. Furthermore, we prove that computing the exact interval hull of the optimal set is NP-hard for linear programs with an interval right-hand-side vector. We then propose a new decomposition method for approximating the optimal solution set based on complementary slackness and show that the method provides the exact description of the optimal set for problems with a fixed coefficient matrix. Finally, we conduct computational experiments to compare our method with the existing orthant decomposition method.

Suggested Citation

  • Elif Garajová & Milan Hladík, 2019. "On the optimal solution set in interval linear programming," Computational Optimization and Applications, Springer, vol. 72(1), pages 269-292, January.
  • Handle: RePEc:spr:coopap:v:72:y:2019:i:1:d:10.1007_s10589-018-0029-8
    DOI: 10.1007/s10589-018-0029-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-018-0029-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-018-0029-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patrick G. McKeown & Roland A. Minch, 1982. "Note---Multiplicative Interval Variation of Objective Function Coefficients in Linear Programming," Management Science, INFORMS, vol. 28(12), pages 1462-1470, December.
    2. Zhou, Feng & Huang, Gordon H. & Chen, Guo-Xian & Guo, Huai-Cheng, 2009. "Enhanced-interval linear programming," European Journal of Operational Research, Elsevier, vol. 199(2), pages 323-333, December.
    3. Xin Chen & Yuhan Zhang, 2009. "Uncertain Linear Programs: Extended Affinely Adjustable Robust Counterparts," Operations Research, INFORMS, vol. 57(6), pages 1469-1482, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scott E. Sampson, 2008. "OR PRACTICE---Optimization of Vacation Timeshare Scheduling," Operations Research, INFORMS, vol. 56(5), pages 1079-1088, October.
    2. Walid Ben-Ameur & Adam Ouorou & Guanglei Wang & Mateusz Żotkiewicz, 2018. "Multipolar robust optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 395-434, December.
    3. Angelos Georghiou & Wolfram Wiesemann & Daniel Kuhn, 2010. "Generalized Decision Rule Approximations for Stochastic Programming via Liftings," Working Papers 043, COMISEF.
    4. Postek, K.S. & den Hertog, D., 2016. "Multi-stage Adjustable Robust Mixed-Integer Optimization via Iterative Splitting of the Uncertainty set (Revision of CentER Discussion Paper 2014-056)," Other publications TiSEM 08442e3a-d1eb-42b3-8f13-8, Tilburg University, School of Economics and Management.
    5. Oğuz Solyalı & Jean-François Cordeau & Gilbert Laporte, 2016. "The Impact of Modeling on Robust Inventory Management Under Demand Uncertainty," Management Science, INFORMS, vol. 62(4), pages 1188-1201, April.
    6. Xie, Chen & Wang, Liangquan & Yang, Chaolin, 2021. "Robust inventory management with multiple supply sources," European Journal of Operational Research, Elsevier, vol. 295(2), pages 463-474.
    7. Christoph Buchheim & Jannis Kurtz, 2018. "Robust combinatorial optimization under convex and discrete cost uncertainty," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 211-238, September.
    8. Aakil M. Caunhye & Nazli Yonca Aydin & H. Sebnem Duzgun, 2020. "Robust post-disaster route restoration," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 1055-1087, December.
    9. Rahal, Said & Papageorgiou, Dimitri J. & Li, Zukui, 2021. "Hybrid strategies using linear and piecewise-linear decision rules for multistage adaptive linear optimization," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1014-1030.
    10. Shiva Zokaee & Armin Jabbarzadeh & Behnam Fahimnia & Seyed Jafar Sadjadi, 2017. "Robust supply chain network design: an optimization model with real world application," Annals of Operations Research, Springer, vol. 257(1), pages 15-44, October.
    11. Bredström, D. & Flisberg, P. & Rönnqvist, M., 2013. "A new method for robustness in rolling horizon planning," International Journal of Production Economics, Elsevier, vol. 143(1), pages 41-52.
    12. Postek, K.S. & den Hertog, D., 2016. "Multi-stage Adjustable Robust Mixed-Integer Optimization via Iterative Splitting of the Uncertainty set (Revision of CentER Discussion Paper 2014-056)," Discussion Paper 2016-006, Tilburg University, Center for Economic Research.
    13. Amir Ardestani-Jaafari & Erick Delage, 2016. "Robust Optimization of Sums of Piecewise Linear Functions with Application to Inventory Problems," Operations Research, INFORMS, vol. 64(2), pages 474-494, April.
    14. Haolin Ruan & Zhi Chen & Chin Pang Ho, 2023. "Adjustable Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1002-1023, September.
    15. Marcio Costa Santos & Michael Poss & Dritan Nace, 2018. "A perfect information lower bound for robust lot-sizing problems," Annals of Operations Research, Springer, vol. 271(2), pages 887-913, December.
    16. Jianzhe Zhen & Ahmadreza Marandi & Danique de Moor & Dick den Hertog & Lieven Vandenberghe, 2022. "Disjoint Bilinear Optimization: A Two-Stage Robust Optimization Perspective," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2410-2427, September.
    17. Jiawei Chen & Jun Li & Xiaobing Li & Yibing Lv & Jen-Chih Yao, 2020. "Radius of Robust Feasibility of System of Convex Inequalities with Uncertain Data," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 384-399, February.
    18. Joel Goh & Melvyn Sim, 2011. "Robust Optimization Made Easy with ROME," Operations Research, INFORMS, vol. 59(4), pages 973-985, August.
    19. Postek, Krzysztof & Romeijnders, Ward & den Hertog, Dick & van der Vlerk, Maartne H., 2016. "Efficient Methods for Several Classes of Ambiguous Stochastic Programming Problems under Mean-MAD Information," Other publications TiSEM a03f895f-b941-41a9-84e0-b, Tilburg University, School of Economics and Management.
    20. Mehdi Allahdadi & Aida Batamiz, 2021. "Generation of some methods for solving interval multi-objective linear programming models," OPSEARCH, Springer;Operational Research Society of India, vol. 58(4), pages 1077-1115, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:72:y:2019:i:1:d:10.1007_s10589-018-0029-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.