IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v57y2014i1p167-203.html
   My bibliography  Save this article

SDDP for some interstage dependent risk-averse problems and application to hydro-thermal planning

Author

Listed:
  • Vincent Guigues

Abstract

We consider interstage dependent stochastic linear programs where both the random right-hand side and the model of the underlying stochastic process have a special structure. Namely, for equality constraints (resp. inequality constraints) the right-hand side is an affine function (resp. a given function b t ) of the process value for the current time step t. As for m-th component of the process at time step t, it depends on previous values of the process through a function h tm . For this type of problem, to obtain an approximate policy under some assumptions for functions b t and h tm , we detail a stochastic dual dynamic programming algorithm. Our analysis includes some enhancements of this algorithm such as the definition of a state vector of minimal size, the computation of feasibility cuts without the assumption of relatively complete recourse, as well as efficient formulas for sharing optimality and feasibility cuts between nodes of the same stage. The algorithm is given for both a non-risk-averse and a risk-averse model. We finally provide preliminary results comparing the performances of the recourse functions corresponding to these two models for a real-life application. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Vincent Guigues, 2014. "SDDP for some interstage dependent risk-averse problems and application to hydro-thermal planning," Computational Optimization and Applications, Springer, vol. 57(1), pages 167-203, January.
  • Handle: RePEc:spr:coopap:v:57:y:2014:i:1:p:167-203
    DOI: 10.1007/s10589-013-9584-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-013-9584-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-013-9584-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrzej Ruszczynski & Alexander Shapiro, 2004. "Conditional Risk Mappings," Risk and Insurance 0404002, University Library of Munich, Germany, revised 08 Oct 2005.
    2. Andrzej Ruszczynski & Alexander Shapiro, 2004. "Optimization of Convex Risk Functions," Risk and Insurance 0404001, University Library of Munich, Germany, revised 08 Oct 2005.
    3. Shapiro, Alexander & Tekaya, Wajdi & da Costa, Joari Paulo & Soares, Murilo Pereira, 2013. "Risk neutral and risk averse Stochastic Dual Dynamic Programming method," European Journal of Operational Research, Elsevier, vol. 224(2), pages 375-391.
    4. Andrzej Ruszczyński & Alexander Shapiro, 2006. "Optimization of Convex Risk Functions," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 433-452, August.
    5. Shapiro, Alexander, 2011. "Analysis of stochastic dual dynamic programming method," European Journal of Operational Research, Elsevier, vol. 209(1), pages 63-72, February.
    6. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    7. John R. Birge, 1985. "Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs," Operations Research, INFORMS, vol. 33(5), pages 989-1007, October.
    8. Philpott, A.B. & de Matos, V.L., 2012. "Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion," European Journal of Operational Research, Elsevier, vol. 218(2), pages 470-483.
    9. Guigues, Vincent & Sagastizábal, Claudia, 2012. "The value of rolling-horizon policies for risk-averse hydro-thermal planning," European Journal of Operational Research, Elsevier, vol. 217(1), pages 129-140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michelle Bandarra & Vincent Guigues, 2021. "Single cut and multicut stochastic dual dynamic programming with cut selection for multistage stochastic linear programs: convergence proof and numerical experiments," Computational Management Science, Springer, vol. 18(2), pages 125-148, June.
    2. Lee, Jinkyu & Bae, Sanghyeon & Kim, Woo Chang & Lee, Yongjae, 2023. "Value function gradient learning for large-scale multistage stochastic programming problems," European Journal of Operational Research, Elsevier, vol. 308(1), pages 321-335.
    3. Guigues, Vincent & Shapiro, Alexander & Cheng, Yi, 2023. "Duality and sensitivity analysis of multistage linear stochastic programs," European Journal of Operational Research, Elsevier, vol. 308(2), pages 752-767.
    4. Lorenzo Reus & Guillermo Alexander Sepúlveda-Hurtado, 2023. "Foreign exchange trading and management with the stochastic dual dynamic programming method," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-38, December.
    5. Weini Zhang & Hamed Rahimian & Güzin Bayraksan, 2016. "Decomposition Algorithms for Risk-Averse Multistage Stochastic Programs with Application to Water Allocation under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 385-404, August.
    6. Escudero Bueno, Laureano F. & Garín Martín, María Araceli & Merino Maestre, María & Pérez Sainz de Rozas, Gloria, 2015. "Some experiments on solving multistage stochastic mixed 0-1 programs with time stochastic dominance constraints," BILTOKI 1134-8984, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
    7. Pritchard, Geoffrey, 2015. "Stochastic inflow modeling for hydropower scheduling problems," European Journal of Operational Research, Elsevier, vol. 246(2), pages 496-504.
    8. Lorenzo Reus & Rodolfo Prado, 2022. "Need to Meet Investment Goals? Track Synthetic Indexes with the SDDP Method," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 47-69, June.
    9. Guigues, Vincent & Juditsky, Anatoli & Nemirovski, Arkadi, 2021. "Constant Depth Decision Rules for multistage optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 295(1), pages 223-232.
    10. Escudero, Laureano F. & Garín, María Araceli & Merino, María & Pérez, Gloria, 2016. "On time stochastic dominance induced by mixed integer-linear recourse in multistage stochastic programs," European Journal of Operational Research, Elsevier, vol. 249(1), pages 164-176.
    11. W. Ackooij & X. Warin, 2020. "On conditional cuts for stochastic dual dynamic programming," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 173-199, June.
    12. Aldasoro, Unai & Escudero, Laureano F. & Merino, María & Pérez, Gloria, 2017. "A parallel Branch-and-Fix Coordination based matheuristic algorithm for solving large sized multistage stochastic mixed 0–1 problems," European Journal of Operational Research, Elsevier, vol. 258(2), pages 590-606.
    13. Zhou, Shaorui & Zhang, Hui & Shi, Ning & Xu, Zhou & Wang, Fan, 2020. "A new convergent hybrid learning algorithm for two-stage stochastic programs," European Journal of Operational Research, Elsevier, vol. 283(1), pages 33-46.
    14. Guigues, Vincent, 2017. "Dual Dynamic Programing with cut selection: Convergence proof and numerical experiments," European Journal of Operational Research, Elsevier, vol. 258(1), pages 47-57.
    15. Vitor L. de Matos & David P. Morton & Erlon C. Finardi, 2017. "Assessing policy quality in a multistage stochastic program for long-term hydrothermal scheduling," Annals of Operations Research, Springer, vol. 253(2), pages 713-731, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. W. Ackooij & X. Warin, 2020. "On conditional cuts for stochastic dual dynamic programming," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 173-199, June.
    2. Liu, Rui Peng & Shapiro, Alexander, 2020. "Risk neutral reformulation approach to risk averse stochastic programming," European Journal of Operational Research, Elsevier, vol. 286(1), pages 21-31.
    3. Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.
    4. de Queiroz, Anderson Rodrigo, 2016. "Stochastic hydro-thermal scheduling optimization: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 382-395.
    5. Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.
    6. Vincent Guigues & Renato D. C. Monteiro, 2021. "Stochastic Dynamic Cutting Plane for Multistage Stochastic Convex Programs," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 513-559, May.
    7. Wim Ackooij & Welington Oliveira & Yongjia Song, 2019. "On level regularization with normal solutions in decomposition methods for multistage stochastic programming problems," Computational Optimization and Applications, Springer, vol. 74(1), pages 1-42, September.
    8. Daniel R. Jiang & Warren B. Powell, 2018. "Risk-Averse Approximate Dynamic Programming with Quantile-Based Risk Measures," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 554-579, May.
    9. Soares, Murilo Pereira & Street, Alexandre & Valladão, Davi Michel, 2017. "On the solution variability reduction of Stochastic Dual Dynamic Programming applied to energy planning," European Journal of Operational Research, Elsevier, vol. 258(2), pages 743-760.
    10. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    11. Mahmutoğulları, Ali İrfan & Çavuş, Özlem & Aktürk, M. Selim, 2018. "Bounds on risk-averse mixed-integer multi-stage stochastic programming problems with mean-CVaR," European Journal of Operational Research, Elsevier, vol. 266(2), pages 595-608.
    12. Löhndorf, Nils & Shapiro, Alexander, 2019. "Modeling time-dependent randomness in stochastic dual dynamic programming," European Journal of Operational Research, Elsevier, vol. 273(2), pages 650-661.
    13. Weini Zhang & Hamed Rahimian & Güzin Bayraksan, 2016. "Decomposition Algorithms for Risk-Averse Multistage Stochastic Programs with Application to Water Allocation under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 385-404, August.
    14. Rudloff, Birgit & Street, Alexandre & Valladão, Davi M., 2014. "Time consistency and risk averse dynamic decision models: Definition, interpretation and practical consequences," European Journal of Operational Research, Elsevier, vol. 234(3), pages 743-750.
    15. Patrick Cheridito & Tianhui Li, 2009. "Risk Measures On Orlicz Hearts," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 189-214, April.
    16. Andre Luiz Diniz & Maria Elvira P. Maceira & Cesar Luis V. Vasconcellos & Debora Dias J. Penna, 2020. "A combined SDDP/Benders decomposition approach with a risk-averse surface concept for reservoir operation in long term power generation planning," Annals of Operations Research, Springer, vol. 292(2), pages 649-681, September.
    17. Bellini, Fabio & Rosazza Gianin, Emanuela, 2008. "On Haezendonck risk measures," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 986-994, June.
    18. Schur, Rouven & Gönsch, Jochen & Hassler, Michael, 2019. "Time-consistent, risk-averse dynamic pricing," European Journal of Operational Research, Elsevier, vol. 277(2), pages 587-603.
    19. Shapiro, Alexander, 2021. "Tutorial on risk neutral, distributionally robust and risk averse multistage stochastic programming," European Journal of Operational Research, Elsevier, vol. 288(1), pages 1-13.
    20. Dias, Bruno Henriques & Tomim, Marcelo Aroca & Marcato, André Luís Marques & Ramos, Tales Pulinho & Brandi, Rafael Bruno S. & Junior, Ivo Chaves da Silva & Filho, João Alberto Passos, 2013. "Parallel computing applied to the stochastic dynamic programming for long term operation planning of hydrothermal power systems," European Journal of Operational Research, Elsevier, vol. 229(1), pages 212-222.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:57:y:2014:i:1:p:167-203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.