IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v39y2024i1d10.1007_s00180-023-01371-3.html
   My bibliography  Save this article

Testing heterogeneity in quantile regression: a multigroup approach

Author

Listed:
  • Cristina Davino

    (University of Naples Federico II)

  • Giuseppe Lamberti

    (University of Naples Federico II)

  • Domenico Vistocco

    (University of Naples Federico II)

Abstract

The paper aims to introduce a multigroup approach to assess group effects in quantile regression. The procedure estimates the same regression model at different quantiles, and for different groups of observations. Such groups are defined by the levels of one or more stratification variables. The proposed approach exploits a computational procedure to test group effects. In particular, a bootstrap parametric test and a permutation test are compared through artificial data taking into account different sample sizes, and comparing their performance in detecting low, medium, and high differences among coefficients pertaining different groups. An empirical analysis on MOOC students’ performance is used to show the proposal in action. The effect of the two main drivers impacting on performance, learning and engagement, is explored at different conditional quantiles, and comparing self-paced courses with instructor-paced courses, offered on the EdX platform.

Suggested Citation

  • Cristina Davino & Giuseppe Lamberti & Domenico Vistocco, 2024. "Testing heterogeneity in quantile regression: a multigroup approach," Computational Statistics, Springer, vol. 39(1), pages 117-140, February.
  • Handle: RePEc:spr:compst:v:39:y:2024:i:1:d:10.1007_s00180-023-01371-3
    DOI: 10.1007/s00180-023-01371-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-023-01371-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-023-01371-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Srijan Sengupta & Stanislav Volgushev & Xiaofeng Shao, 2016. "A Subsampled Double Bootstrap for Massive Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1222-1232, July.
    2. C. Davino & R. Romano & D. Vistocco, 2022. "Handling multicollinearity in quantile regression through the use of principal component regression," METRON, Springer;Sapienza Università di Roma, vol. 80(2), pages 153-174, August.
    3. Kherad-Pajouh, Sara & Renaud, Olivier, 2010. "An exact permutation method for testing any effect in balanced and unbalanced fixed effect ANOVA," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1881-1893, July.
    4. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    5. Ariel Kleiner & Ameet Talwalkar & Purnamrita Sarkar & Michael I. Jordan, 2014. "A scalable bootstrap for massive data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(4), pages 795-816, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baolin Chen & Shanshan Song & Yong Zhou, 2024. "Estimation and testing of expectile regression with efficient subsampling for massive data," Statistical Papers, Springer, vol. 65(9), pages 5593-5613, December.
    2. Bingyao Huang & Yanyan Liu & Liuhua Peng, 2023. "Distributed inference for two‐sample U‐statistics in massive data analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(3), pages 1090-1115, September.
    3. Guangbao Guo & Yue Sun & Xuejun Jiang, 2020. "A partitioned quasi-likelihood for distributed statistical inference," Computational Statistics, Springer, vol. 35(4), pages 1577-1596, December.
    4. Marina Bonaccolto-Töpfer & Giovanni Bonaccolto, 2023. "Gender wage inequality: new evidence from penalized expectile regression," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 21(3), pages 511-535, September.
    5. Dimitris N Politis, 2024. "Scalable subsampling: computation, aggregation and inference," Biometrika, Biometrika Trust, vol. 111(1), pages 347-354.
    6. Zhang, Likun & Castillo, Enrique del & Berglund, Andrew J. & Tingley, Martin P. & Govind, Nirmal, 2020. "Computing confidence intervals from massive data via penalized quantile smoothing splines," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    7. Xuejun Ma & Shaochen Wang & Wang Zhou, 2022. "Statistical inference in massive datasets by empirical likelihood," Computational Statistics, Springer, vol. 37(3), pages 1143-1164, July.
    8. Hao Cheng, 2023. "Quantile varying-coefficient structural equation model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(5), pages 1439-1475, December.
    9. Ma, Xuejun & Wang, Shaochen & Zhou, Wang, 2021. "Testing multivariate quantile by empirical likelihood," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    10. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    11. Molyneux, Philip & Pancotto, Livia & Reghezza, Alessio & Rodriguez d'Acri, Costanza, 2022. "Interest rate risk and monetary policy normalisation in the euro area," Journal of International Money and Finance, Elsevier, vol. 124(C).
    12. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    13. Georgios Bertsatos & Plutarchos Sakellaris & Mike G. Tsionas, 2022. "Extensions of the Pesaran, Shin and Smith (2001) bounds testing procedure," Empirical Economics, Springer, vol. 62(2), pages 605-634, February.
    14. Salimata Sissoko, 2011. "Working Paper 03-11 - Niveau de décentralisation de la négociation et structure des salaires," Working Papers 1103, Federal Planning Bureau, Belgium.
    15. Lu, Yao & Zhan, Shuwei & Zhan, Minghua, 2024. "Has FinTech changed the sensitivity of corporate investment to interest rates?—Evidence from China," Research in International Business and Finance, Elsevier, vol. 68(C).
    16. Korom, Philipp, 2016. "Inherited advantage: The importance of inheritance for private wealth accumulation in Europe," MPIfG Discussion Paper 16/11, Max Planck Institute for the Study of Societies.
    17. Daniele, Vittorio, 2007. "Criminalità e investimenti esteri. Un’analisi per le province italiane [The effect of organized crime on Foreign Investments. An Empirical Analysis for the Italian Provinces]," MPRA Paper 6417, University Library of Munich, Germany.
    18. Ma, Lingjie & Koenker, Roger, 2006. "Quantile regression methods for recursive structural equation models," Journal of Econometrics, Elsevier, vol. 134(2), pages 471-506, October.
    19. Cuesta, Lizeth & Ruiz, Yomara, 2021. "Efecto de la globalización sobre la desigualdad. Un estudio global para 104 países usando regresiones cuantílicas [Effect of globalization on inequality. A global study for 104 countries using quan," MPRA Paper 111022, University Library of Munich, Germany.
    20. Dutta, Anupam & Bouri, Elie & Rothovius, Timo & Uddin, Gazi Salah, 2023. "Climate risk and green investments: New evidence," Energy, Elsevier, vol. 265(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:1:d:10.1007_s00180-023-01371-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.