IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v31y2016i4d10.1007_s00180-016-0672-4.html
   My bibliography  Save this article

The role of the isotonizing algorithm in Stein’s covariance matrix estimator

Author

Listed:
  • Brett Naul

    (Stanford University)

  • Bala Rajaratnam

    (Stanford University)

  • Dario Vincenzi

    (Université Nice Sophia Antipolis)

Abstract

Covariance matrix estimation is central to many applications in statistics and allied fields. A useful estimator in this context was proposed by Stein which regularizes the sample covariance matrix by shrinking its eigenvalues together. This estimator can sometimes yield estimates of the eigenvalues that are negative or differ in order from the observed eigenvalues. In order to rectify this problem, Stein also proposed an ad hoc “isotonizing” procedure which pools together eigenvalue estimates in such a way that the original ordering and positivity of the estimates are enforced. From numerical studies, Stein’s “isotonized” estimator is known to have good risk properties in comparison with the maximum likelihood estimator. However, it remains unclear what role is played by the isotonizing procedure in the remarkable risk reductions achieved by Stein’s estimator. Through two distinct lines of investigations, it is established that Stein’s estimator without the isotonizing algorithm gives only modest risk reductions. In cases where the isotonizing algorithm is frequently used, however, Stein’s estimator can lead to significant risk reductions for certain domains of the parameter. In other cases, Stein’s estimator can even yield risk increases, such as when (1) the theoretical eigenvalues are well separated, and/or (2) when the sample size is moderate to large, leading to over-shrinkage.

Suggested Citation

  • Brett Naul & Bala Rajaratnam & Dario Vincenzi, 2016. "The role of the isotonizing algorithm in Stein’s covariance matrix estimator," Computational Statistics, Springer, vol. 31(4), pages 1453-1476, December.
  • Handle: RePEc:spr:compst:v:31:y:2016:i:4:d:10.1007_s00180-016-0672-4
    DOI: 10.1007/s00180-016-0672-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-016-0672-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-016-0672-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Loh, Wei-Liem, 1991. "Estimating covariance matrices II," Journal of Multivariate Analysis, Elsevier, vol. 36(2), pages 163-174, February.
    3. Olivier Ledoit & Michael Wolf, 2013. "Optimal estimation of a large-dimensional covariance matrix under Stein’s loss," ECON - Working Papers 122, Department of Economics - University of Zurich, revised Mar 2017.
    4. Schäfer Juliane & Strimmer Korbinian, 2005. "A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-32, November.
    5. Touloumis, Anestis, 2015. "Nonparametric Stein-type shrinkage covariance matrix estimators in high-dimensional settings," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 251-261.
    6. Joong-Ho Won & Johan Lim & Seung-Jean Kim & Bala Rajaratnam, 2013. "Condition-number-regularized covariance estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 427-450, June.
    7. Michael J. Daniels & Robert E. Kass, 2001. "Shrinkage Estimators for Covariance Matrices," Biometrics, The International Biometric Society, vol. 57(4), pages 1173-1184, December.
    8. Fisher, Thomas J. & Sun, Xiaoqian, 2011. "Improved Stein-type shrinkage estimators for the high-dimensional multivariate normal covariance matrix," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1909-1918, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arnab Chakrabarti & Rituparna Sen, 2018. "Some Statistical Problems with High Dimensional Financial data," Papers 1808.02953, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ikeda, Yuki & Kubokawa, Tatsuya & Srivastava, Muni S., 2016. "Comparison of linear shrinkage estimators of a large covariance matrix in normal and non-normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 95-108.
    2. Hannart, Alexis & Naveau, Philippe, 2014. "Estimating high dimensional covariance matrices: A new look at the Gaussian conjugate framework," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 149-162.
    3. Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
    4. Kwon, Yongchan & Choi, Young-Geun & Park, Taesung & Ziegler, Andreas & Paik, Myunghee Cho, 2017. "Generalized estimating equations with stabilized working correlation structure," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 1-11.
    5. Carel F. W. Peeters & Mark A. Wiel & Wessel N. Wieringen, 2020. "The spectral condition number plot for regularization parameter evaluation," Computational Statistics, Springer, vol. 35(2), pages 629-646, June.
    6. van Wieringen, Wessel N. & Peeters, Carel F.W., 2016. "Ridge estimation of inverse covariance matrices from high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 284-303.
    7. Avagyan, Vahe & Alonso Fernández, Andrés Modesto & Nogales, Francisco J., 2015. "D-trace Precision Matrix Estimation Using Adaptive Lasso Penalties," DES - Working Papers. Statistics and Econometrics. WS 21775, Universidad Carlos III de Madrid. Departamento de Estadística.
    8. Konno, Yoshihiko, 2009. "Shrinkage estimators for large covariance matrices in multivariate real and complex normal distributions under an invariant quadratic loss," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2237-2253, November.
    9. Viet Anh Nguyen & Daniel Kuhn & Peyman Mohajerin Esfahani, 2018. "Distributionally Robust Inverse Covariance Estimation: The Wasserstein Shrinkage Estimator," Papers 1805.07194, arXiv.org.
    10. Tatsuya Kubokawa & Muni S. Srivastava, 2013. "Optimal Ridge-type Estimators of Covariance Matrix in High Dimension," CIRJE F-Series CIRJE-F-906, CIRJE, Faculty of Economics, University of Tokyo.
    11. Yang, Guangren & Liu, Yiming & Pan, Guangming, 2019. "Weighted covariance matrix estimation," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 82-98.
    12. Arnab Chakrabarti & Rituparna Sen, 2018. "Some Statistical Problems with High Dimensional Financial data," Papers 1808.02953, arXiv.org.
    13. Lee, Kyoungjae & Jo, Seongil & Lee, Jaeyong, 2022. "The beta-mixture shrinkage prior for sparse covariances with near-minimax posterior convergence rate," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    14. Chi, Eric C. & Lange, Kenneth, 2014. "Stable estimation of a covariance matrix guided by nuclear norm penalties," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 117-128.
    15. Bailey, Natalia & Pesaran, M. Hashem & Smith, L. Vanessa, 2019. "A multiple testing approach to the regularisation of large sample correlation matrices," Journal of Econometrics, Elsevier, vol. 208(2), pages 507-534.
    16. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    17. Qian, Yilin & Thompson, Ryan & Vasnev, Andrey L, 2022. "Global combinations of expert forecasts," Working Papers BAWP-2022-02, University of Sydney Business School, Discipline of Business Analytics.
    18. Wen, Jun, 2018. "Estimation of two high-dimensional covariance matrices and the spectrum of their ratio," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 1-29.
    19. Tsubasa Ito & Tatsuya Kubokawa, 2015. "Linear Ridge Estimator of High-Dimensional Precision Matrix Using Random Matrix Theory ," CIRJE F-Series CIRJE-F-995, CIRJE, Faculty of Economics, University of Tokyo.
    20. Zhou, Yang & Chen, Di-Rong & Huang, Wei, 2019. "A class of optimal estimators for the covariance operator in reproducing kernel Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 166-178.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:31:y:2016:i:4:d:10.1007_s00180-016-0672-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.