IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v129y2015i1p89-101.html
   My bibliography  Save this article

A bitter cup: climate change profile of global production of Arabica and Robusta coffee

Author

Listed:
  • Christian Bunn
  • Peter Läderach
  • Oriana Ovalle Rivera
  • Dieter Kirschke

Abstract

Coffee has proven to be highly sensitive to climate change. Because coffee plantations have a lifespan of about thirty years, the likely effects of future climates are already a concern. Forward-looking research on adaptation is therefore in high demand across the entire supply chain. In this paper we seek to project current and future climate suitability for coffee production (Coffea arabica and Coffea canephora) on a global scale. We used machine learning algorithms to derive functions of climatic suitability from a database of geo-referenced production locations. Use of several parameter combinations enhances the robustness of our analysis. The resulting multi-model ensemble suggests that higher temperatures may reduce yields of C. arabica, while C. canephora could suffer from increasing variability of intra-seasonal temperatures. Climate change will reduce the global area suitable for coffee by about 50 % across emission scenarios. Impacts are highest at low latitudes and low altitudes. Impacts at higher altitudes and higher latitudes are still negative but less pronounced. The world’s dominant production regions in Brazil and Vietnam may experience substantial reductions in area available for coffee. Some regions in East Africa and Asia may become more suitable, but these are partially in forested areas, which could pose a challenge to mitigation efforts. Copyright The Author(s) 2015

Suggested Citation

  • Christian Bunn & Peter Läderach & Oriana Ovalle Rivera & Dieter Kirschke, 2015. "A bitter cup: climate change profile of global production of Arabica and Robusta coffee," Climatic Change, Springer, vol. 129(1), pages 89-101, March.
  • Handle: RePEc:spr:climat:v:129:y:2015:i:1:p:89-101
    DOI: 10.1007/s10584-014-1306-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-014-1306-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-014-1306-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    2. Karatzoglou, Alexandros & Meyer, David & Hornik, Kurt, 2006. "Support Vector Machines in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 15(i09).
    3. VanDerWal, Jeremy & Shoo, Luke P. & Graham, Catherine & Williams, Stephen E., 2009. "Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know?," Ecological Modelling, Elsevier, vol. 220(4), pages 589-594.
    4. Jurandir Zullo & Hilton Pinto & Eduardo Assad & Ana Ávila, 2011. "Potential for growing Arabica coffee in the extreme south of Brazil in a warmer world," Climatic Change, Springer, vol. 109(3), pages 535-548, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    2. Paulo Infante & Gonçalo Jacinto & Anabela Afonso & Leonor Rego & Pedro Nogueira & Marcelo Silva & Vitor Nogueira & José Saias & Paulo Quaresma & Daniel Santos & Patrícia Góis & Paulo Rebelo Manuel, 2023. "Factors That Influence the Type of Road Traffic Accidents: A Case Study in a District of Portugal," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    3. Ephrem Habyarimana & Faheem S Baloch, 2021. "Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-23, March.
    4. Alexander Wettstein & Gabriel Jenni & Ida Schneider & Fabienne Kühne & Martin grosse Holtforth & Roberto La Marca, 2023. "Predictors of Psychological Strain and Allostatic Load in Teachers: Examining the Long-Term Effects of Biopsychosocial Risk and Protective Factors Using a LASSO Regression Approach," IJERPH, MDPI, vol. 20(10), pages 1-20, May.
    5. Tang, Kayu & Parsons, David J. & Jude, Simon, 2019. "Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 24-36.
    6. Daifeng Xiang & Gangsheng Wang & Jing Tian & Wanyu Li, 2023. "Global patterns and edaphic-climatic controls of soil carbon decomposition kinetics predicted from incubation experiments," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Tranos, Emmanouil & Incera, Andre Carrascal & Willis, George, 2022. "Using the web to predict regional trade flows: data extraction, modelling, and validation," OSF Preprints 9bu5z, Center for Open Science.
    8. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    9. Marcos Rodrigues & Fermín Alcasena & Pere Gelabert & Cristina Vega‐García, 2020. "Geospatial Modeling of Containment Probability for Escaped Wildfires in a Mediterranean Region," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1762-1779, September.
    10. Giovanny Pillajo-Quijia & Blanca Arenas-Ramírez & Camino González-Fernández & Francisco Aparicio-Izquierdo, 2020. "Influential Factors on Injury Severity for Drivers of Light Trucks and Vans with Machine Learning Methods," Sustainability, MDPI, vol. 12(4), pages 1-28, February.
    11. Zander S. Venter & Adam Sadilek & Charlotte Stanton & David N. Barton & Kristin Aunan & Sourangsu Chowdhury & Aaron Schneider & Stefano Maria Iacus, 2021. "Mobility in Blue-Green Spaces Does Not Predict COVID-19 Transmission: A Global Analysis," IJERPH, MDPI, vol. 18(23), pages 1-12, November.
    12. Na Tang & Maoxiang Yuan & Zhijun Chen & Jian Ma & Rui Sun & Yide Yang & Quanyuan He & Xiaowei Guo & Shixiong Hu & Junhua Zhou, 2023. "Machine Learning Prediction Model of Tuberculosis Incidence Based on Meteorological Factors and Air Pollutants," IJERPH, MDPI, vol. 20(5), pages 1-17, February.
    13. G. Brooke Anderson & Keith W. Oleson & Bryan Jones & Roger D. Peng, 2018. "Classifying heatwaves: developing health-based models to predict high-mortality versus moderate United States heatwaves," Climatic Change, Springer, vol. 146(3), pages 439-453, February.
    14. Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
    15. World Bank Group, 2014. "Turn Down the Heat : Confronting the New Climate Normal [Bajemos la temperatura : cómo hacer frente a la nueva realidad climática (Vol. 4)]," World Bank Publications - Books, The World Bank Group, number 20595, December.
    16. Marchetto, Elisa & Da Re, Daniele & Tordoni, Enrico & Bazzichetto, Manuele & Zannini, Piero & Celebrin, Simone & Chieffallo, Ludovico & Malavasi, Marco & Rocchini, Duccio, 2023. "Testing the effect of sample prevalence and sampling methods on probability- and favourability-based SDMs," Ecological Modelling, Elsevier, vol. 477(C).
    17. Jun Wang & Jinyong Huang & Yunlong Hu & Qianwen Guo & Shasha Zhang & Jinglin Tian & Yanqin Niu & Ling Ji & Yuzhong Xu & Peijun Tang & Yaqin He & Yuna Wang & Shuya Zhang & Hao Yang & Kang Kang & Xinchu, 2024. "Terminal modifications independent cell-free RNA sequencing enables sensitive early cancer detection and classification," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Ali Al-Ramini & Mohammad A Takallou & Daniel P Piatkowski & Fadi Alsaleem, 2022. "Quantifying changes in bicycle volumes using crowdsourced data," Environment and Planning B, , vol. 49(6), pages 1612-1630, July.
    19. Raquel Ghini & André Torre-Neto & Anamaria Dentzien & Oliveiro Guerreiro-Filho & Regiane Iost & Flávia Patrício & Jeanne Prado & Roberto Thomaziello & Wagner Bettiol & Fábio DaMatta, 2015. "Coffee growth, pest and yield responses to free-air CO 2 enrichment," Climatic Change, Springer, vol. 132(2), pages 307-320, September.
    20. Yagli, Gokhan Mert & Yang, Dazhi & Srinivasan, Dipti, 2019. "Automatic hourly solar forecasting using machine learning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 487-498.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:129:y:2015:i:1:p:89-101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.