IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v20y2012i2p281-297.html
   My bibliography  Save this article

A fuzzy based threshold policy for a single server retrial queue with vacations

Author

Listed:
  • Seyed Khodadadi
  • Fariborz Jolai

Abstract

In this paper we deal with a single server retrial queue with vacations. The server serves the customers until the system becomes empty, then it takes a vacation. The system consists of two types of costs. The blocking cost is considered whenever a customer is blocked either because of the server is busy or off. There is also a cost each time the server is turned on. The problem is to find an effective policy for turning on the dormant server. We propose a Fuzzy Based Threshold Policy (FBTP) to control the server, substitute for conventional threshold policies. The FBTP is based on four input parameters, an inference stage and it is tuned up using a stochastic List Based Threshold Accepting (LBTA) algorithm. Simulation models are developed to validate the fuzzy controller. Numerical experiments are provided to show that the proposed method is superior to crisp threshold policies. Copyright Springer-Verlag 2012

Suggested Citation

  • Seyed Khodadadi & Fariborz Jolai, 2012. "A fuzzy based threshold policy for a single server retrial queue with vacations," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 281-297, June.
  • Handle: RePEc:spr:cejnor:v:20:y:2012:i:2:p:281-297
    DOI: 10.1007/s10100-010-0169-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10100-010-0169-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10100-010-0169-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Artalejo, J.R. & Economou, A. & Lopez-Herrero, M.J., 2007. "Algorithmic approximations for the busy period distribution of the M/M/c retrial queue," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1687-1702, February.
    2. D. Arivudainambi & I. Averbakh & O. Berman, 2009. "Stationary analysis of a single server retrial queue with priority and vacation," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 5(1), pages 26-47.
    3. Feng, Wei & Adachi, Kouichi & Kowada, Masashi, 2002. "A two-queue and two-server model with a threshold-based control service policy," European Journal of Operational Research, Elsevier, vol. 137(3), pages 593-611, March.
    4. Ke, Jau-Chuan & Huang, Hsin-I & Lin, Chuen-Horng, 2007. "On retrial queueing model with fuzzy parameters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 272-280.
    5. Artalejo, J. R. & Gomez-Corral, A. & Neuts, M. F., 2001. "Analysis of multiserver queues with constant retrial rate," European Journal of Operational Research, Elsevier, vol. 135(3), pages 569-581, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meena, Rakesh Kumar & Jain, Madhu & Sanga, Sudeep Singh & Assad, Assif, 2019. "Fuzzy modeling and harmony search optimization for machining system with general repair, standby support and vacation," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 858-873.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yacov Satin & Evsey Morozov & Ruslana Nekrasova & Alexander Zeifman & Ksenia Kiseleva & Anna Sinitcina & Alexander Sipin & Galina Shilova & Irina Gudkova, 2018. "Upper bounds on the rate of convergence for constant retrial rate queueing model with two servers," Statistical Papers, Springer, vol. 59(4), pages 1271-1282, December.
    2. Dong-Yuh Yang & Po-Kai Chang, 2015. "A parametric programming solution to the -policy queue with fuzzy parameters," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(4), pages 590-598, March.
    3. Eugene Lebedev & Vadym Ponomarov, 2016. "Steady-state analysis of M/M/c/c-type retrial queueing systems with constant retrial rate," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 693-704, October.
    4. Tuan Phung-Duc & Wouter Rogiest & Yutaka Takahashi & Herwig Bruneel, 2016. "Retrial queues with balanced call blending: analysis of single-server and multiserver model," Annals of Operations Research, Springer, vol. 239(2), pages 429-449, April.
    5. Blanc, J.P.C. & den Hertog, D., 2008. "On Markov Chains with Uncertain Data," Other publications TiSEM b44dfb0a-1676-4ce3-8d16-f, Tilburg University, School of Economics and Management.
    6. Efrosinin, Dmitry & Winkler, Anastasia, 2011. "Queueing system with a constant retrial rate, non-reliable server and threshold-based recovery," European Journal of Operational Research, Elsevier, vol. 210(3), pages 594-605, May.
    7. Artalejo, Jesus R. & Economou, Antonis & Gómez-Corral, Antonio, 2008. "Algorithmic analysis of the Geo/Geo/c retrial queue," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1042-1056, September.
    8. Konstantin Avrachenkov & Evsey Morozov, 2014. "Stability analysis of GI/GI/c/K retrial queue with constant retrial rate," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 79(3), pages 273-291, June.
    9. Dmitry Efrosinin & Anastasia Winkler & Pinzger Martin, 2015. "Confidence Intervals for Performance Measures of M/M/1 Queue with Constant Retrial Policy," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 32(06), pages 1-12, December.
    10. Feng, Wei & Umemura, Masataka, 2009. "Analysis of a finite buffer model with two servers and two nonpreemptive priority classes," European Journal of Operational Research, Elsevier, vol. 192(1), pages 151-172, January.
    11. Sofiane Ouazine & Karim Abbas, 2016. "A functional approximation for retrial queues with two way communication," Annals of Operations Research, Springer, vol. 247(1), pages 211-227, December.
    12. Kahraman, Aykut & Gosavi, Abhijit, 2011. "On the distribution of the number stranded in bulk-arrival, bulk-service queues of the M/G/1 form," European Journal of Operational Research, Elsevier, vol. 212(2), pages 352-360, July.
    13. B. Krishna Kumar & A. Thanikachalam & V. Kanakasabapathi & R. Rukmani, 2016. "Performance analysis of a multiprogramming–multiprocessor retrial queueing system with orderly reattempts," Annals of Operations Research, Springer, vol. 247(1), pages 319-364, December.
    14. Yang Song & Zaiming Liu & Yiqiang Q. Zhao, 2016. "Exact tail asymptotics: revisit of a retrial queue with two input streams and two orbits," Annals of Operations Research, Springer, vol. 247(1), pages 97-120, December.
    15. Zhou, Wenhui & Zheng, Zhibin & Xie, Wei, 2017. "A control-chart-based queueing approach for service facility maintenance with energy-delay tradeoff," European Journal of Operational Research, Elsevier, vol. 261(2), pages 613-625.
    16. Sanga, Sudeep Singh & Jain, Madhu, 2019. "FM/FM/1 double orbit retrial queue with customers’ joining strategy: A parametric nonlinear programing approach," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    17. K. Avrachenkov & E. Morozov & B. Steyaert, 2016. "Sufficient stability conditions for multi-class constant retrial rate systems," Queueing Systems: Theory and Applications, Springer, vol. 82(1), pages 149-171, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:20:y:2012:i:2:p:281-297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.