IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v193y2012i1p21-4710.1007-s10479-010-0812-0.html
   My bibliography  Save this article

A framework for optimization under ambiguity

Author

Listed:
  • David Wozabal

Abstract

In this paper, single stage stochastic programs with ambiguous distributions for the involved random variables are considered. Though the true distribution is unknown, existence of a reference measure $\hat {P}$ enables the construction of non-parametric ambiguity sets as Kantorovich balls around $\hat{P}$ . The original stochastic optimization problems are robustified by a worst case approach with respect to these ambiguity sets. The resulting problems are infinite optimization problems and can therefore not be solved computationally by straightforward methods. To nevertheless solve the robustified problems numerically, equivalent formulations as finite dimensional non-convex, semi definite saddle point problems are proposed. Finally an application from portfolio selection is studied for which methods to solve the robust counterpart problems explicitly are proposed and numerical results for sample problems are computed. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • David Wozabal, 2012. "A framework for optimization under ambiguity," Annals of Operations Research, Springer, vol. 193(1), pages 21-47, March.
  • Handle: RePEc:spr:annopr:v:193:y:2012:i:1:p:21-47:10.1007/s10479-010-0812-0
    DOI: 10.1007/s10479-010-0812-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-010-0812-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-010-0812-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Horst & N. V. Thoai, 1999. "DC Programming: Overview," Journal of Optimization Theory and Applications, Springer, vol. 103(1), pages 1-43, October.
    2. Zengjing Chen & Larry Epstein, 2002. "Ambiguity, Risk, and Asset Returns in Continuous Time," Econometrica, Econometric Society, vol. 70(4), pages 1403-1443, July.
    3. Pascal J. Maenhout, 2004. "Robust Portfolio Rules and Asset Pricing," The Review of Financial Studies, Society for Financial Studies, vol. 17(4), pages 951-983.
    4. Klein, Roger W. & Bawa, Vijay S., 1976. "The effect of estimation risk on optimal portfolio choice," Journal of Financial Economics, Elsevier, vol. 3(3), pages 215-231, June.
    5. Laurent El Ghaoui & Maksim Oks & Francois Oustry, 2003. "Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach," Operations Research, INFORMS, vol. 51(4), pages 543-556, August.
    6. Le An & Pham Tao, 2005. "The DC (Difference of Convex Functions) Programming and DCA Revisited with DC Models of Real World Nonconvex Optimization Problems," Annals of Operations Research, Springer, vol. 133(1), pages 23-46, January.
    7. R.H. Tütüncü & M. Koenig, 2004. "Robust Asset Allocation," Annals of Operations Research, Springer, vol. 132(1), pages 157-187, November.
    8. Richardson, Matthew & Smith, Tom, 1993. "A Test for Multivariate Normality in Stock Returns," The Journal of Business, University of Chicago Press, vol. 66(2), pages 295-321, April.
    9. Affleck-Graves, John & McDonald, Bill, 1989. " Nonnormalities and Tests of Asset Pricing Theories," Journal of Finance, American Finance Association, vol. 44(4), pages 889-908, September.
    10. Georg Pflug & David Wozabal, 2007. "Ambiguity in portfolio selection," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 435-442.
    11. Le Thi Hoai An & Pham Dinh Tao & Le Dung Muu, 1998. "A Combined D.C. Optimization—Ellipsoidal Branch-and-Bound Algorithm for Solving Nonconvex Quadratic Programming Problems," Journal of Combinatorial Optimization, Springer, vol. 2(1), pages 9-28, March.
    12. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    13. D. Goldfarb & G. Iyengar, 2003. "Robust Portfolio Selection Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 1-38, February.
    14. Alison L. Gibbs & Francis Edward Su, 2002. "On Choosing and Bounding Probability Metrics," International Statistical Review, International Statistical Institute, vol. 70(3), pages 419-435, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Wozabal, 2014. "Robustifying Convex Risk Measures for Linear Portfolios: A Nonparametric Approach," Operations Research, INFORMS, vol. 62(6), pages 1302-1315, December.
    2. Wang, Zhuolin & You, Keyou & Song, Shiji & Zhang, Yuli, 2020. "Wasserstein distributionally robust shortest path problem," European Journal of Operational Research, Elsevier, vol. 284(1), pages 31-43.
    3. Zhang, Xili & Zhang, Weiguo & Xiao, Weilin, 2013. "Multi-period portfolio optimization under possibility measures," Economic Modelling, Elsevier, vol. 35(C), pages 401-408.
    4. Max Nendel & Alessandro Sgarabottolo, 2022. "A parametric approach to the estimation of convex risk functionals based on Wasserstein distance," Papers 2210.14340, arXiv.org.
    5. Andrew J. Keith & Darryl K. Ahner, 2021. "A survey of decision making and optimization under uncertainty," Annals of Operations Research, Springer, vol. 300(2), pages 319-353, May.
    6. Hu, Jian & Bansal, Manish & Mehrotra, Sanjay, 2018. "Robust decision making using a general utility set," European Journal of Operational Research, Elsevier, vol. 269(2), pages 699-714.
    7. Hachmi Ben Ameur & Mouna Boujelbène & J. L. Prigent & Emna Triki, 2020. "Optimal Portfolio Positioning on Multiple Assets Under Ambiguity," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 21-57, June.
    8. Corina Birghila & Tim J. Boonen & Mario Ghossoub, 2020. "Optimal Insurance under Maxmin Expected Utility," Papers 2010.07383, arXiv.org.
    9. Ran Ji & Miguel A. Lejeune, 2021. "Data-Driven Optimization of Reward-Risk Ratio Measures," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1120-1137, July.
    10. Jose Blanchet & Lin Chen & Xun Yu Zhou, 2022. "Distributionally Robust Mean-Variance Portfolio Selection with Wasserstein Distances," Management Science, INFORMS, vol. 68(9), pages 6382-6410, September.
    11. Corina Birghila & Tim J. Boonen & Mario Ghossoub, 2023. "Optimal insurance under maxmin expected utility," Finance and Stochastics, Springer, vol. 27(2), pages 467-501, April.
    12. Jose Blanchet & Karthyek Murthy, 2019. "Quantifying Distributional Model Risk via Optimal Transport," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 565-600, May.
    13. Ameur, H. Ben & Prigent, J.L., 2013. "Optimal portfolio positioning under ambiguity," Economic Modelling, Elsevier, vol. 34(C), pages 89-97.
    14. Bansal, Manish & Mehrotra, Sanjay, 2019. "On solving two-stage distributionally robust disjunctive programs with a general ambiguity set," European Journal of Operational Research, Elsevier, vol. 279(2), pages 296-307.
    15. Debora Daniela Escobar & Georg Ch. Pflug, 2020. "The distortion principle for insurance pricing: properties, identification and robustness," Annals of Operations Research, Springer, vol. 292(2), pages 771-794, September.
    16. Jitka Dupačová & Václav Kozmík, 2017. "SDDP for multistage stochastic programs: preprocessing via scenario reduction," Computational Management Science, Springer, vol. 14(1), pages 67-80, January.
    17. Grechuk, Bogdan & Zabarankin, Michael, 2018. "Direct data-based decision making under uncertainty," European Journal of Operational Research, Elsevier, vol. 267(1), pages 200-211.
    18. Luo, Fengqiao & Mehrotra, Sanjay, 2019. "Decomposition algorithm for distributionally robust optimization using Wasserstein metric with an application to a class of regression models," European Journal of Operational Research, Elsevier, vol. 278(1), pages 20-35.
    19. Daniela Escobar & Georg Pflug, 2018. "The distortion principle for insurance pricing: properties, identification and robustness," Papers 1809.06592, arXiv.org.
    20. Manish Bansal & Yingqiu Zhang, 2021. "Scenario-based cuts for structured two-stage stochastic and distributionally robust p-order conic mixed integer programs," Journal of Global Optimization, Springer, vol. 81(2), pages 391-433, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maillet, Bertrand & Tokpavi, Sessi & Vaucher, Benoit, 2015. "Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach," European Journal of Operational Research, Elsevier, vol. 244(1), pages 289-299.
    2. Frank Fabozzi & Dashan Huang & Guofu Zhou, 2010. "Robust portfolios: contributions from operations research and finance," Annals of Operations Research, Springer, vol. 176(1), pages 191-220, April.
    3. Gregory, Christine & Darby-Dowman, Ken & Mitra, Gautam, 2011. "Robust optimization and portfolio selection: The cost of robustness," European Journal of Operational Research, Elsevier, vol. 212(2), pages 417-428, July.
    4. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2014. "Recent Developments in Robust Portfolios with a Worst-Case Approach," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 103-121, April.
    5. Hachmi Ben Ameur & Mouna Boujelbène & J. L. Prigent & Emna Triki, 2020. "Optimal Portfolio Positioning on Multiple Assets Under Ambiguity," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 21-57, June.
    6. Hakan Kaya, 2017. "Managing ambiguity in asset allocation," Journal of Asset Management, Palgrave Macmillan, vol. 18(3), pages 163-187, May.
    7. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    8. Lorenzo Garlappi & Raman Uppal & Tan Wang, 2007. "Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach," The Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 41-81, January.
    9. Lotfi, Somayyeh & Zeniosn, Stravros A., 2016. "Equivalence of Robust VaR and CVaR Optimization," Working Papers 16-03, University of Pennsylvania, Wharton School, Weiss Center.
    10. Gianfranco Guastaroba & Gautam Mitra & M Grazia Speranza, 2011. "Investigating the effectiveness of robust portfolio optimization techniques," Journal of Asset Management, Palgrave Macmillan, vol. 12(4), pages 260-280, September.
    11. Kim, Jang Ho & Kim, Woo Chang & Fabozzi, Frank J., 2013. "Composition of robust equity portfolios," Finance Research Letters, Elsevier, vol. 10(2), pages 72-81.
    12. Sandra Cruz Caçador & Pedro Manuel Cortesão Godinho & Joana Maria Pina Cabral Matos Dias, 2022. "A minimax regret portfolio model based on the investor’s utility loss," Operational Research, Springer, vol. 22(1), pages 449-484, March.
    13. Jonathan Li & Roy Kwon, 2013. "Portfolio selection under model uncertainty: a penalized moment-based optimization approach," Journal of Global Optimization, Springer, vol. 56(1), pages 131-164, May.
    14. Somayeh Moazeni & Thomas Coleman & Yuying Li, 2013. "Regularized robust optimization: the optimal portfolio execution case," Computational Optimization and Applications, Springer, vol. 55(2), pages 341-377, June.
    15. Huang, Dashan & Zhu, Shushang & Fabozzi, Frank J. & Fukushima, Masao, 2010. "Portfolio selection under distributional uncertainty: A relative robust CVaR approach," European Journal of Operational Research, Elsevier, vol. 203(1), pages 185-194, May.
    16. Raphael Hauser & Vijay Krishnamurthy & Reha Tutuncu, 2013. "Relative Robust Portfolio Optimization," Papers 1305.0144, arXiv.org, revised May 2013.
    17. David Wozabal, 2014. "Robustifying Convex Risk Measures for Linear Portfolios: A Nonparametric Approach," Operations Research, INFORMS, vol. 62(6), pages 1302-1315, December.
    18. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
    19. Kim, Woo Chang & Kim, Min Jeong & Kim, Jang Ho & Fabozzi, Frank J., 2014. "Robust portfolios that do not tilt factor exposure," European Journal of Operational Research, Elsevier, vol. 234(2), pages 411-421.
    20. Panos Xidonas & Ralph Steuer & Christis Hassapis, 2020. "Robust portfolio optimization: a categorized bibliographic review," Annals of Operations Research, Springer, vol. 292(1), pages 533-552, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:193:y:2012:i:1:p:21-47:10.1007/s10479-010-0812-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.