IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v103y1999i1d10.1023_a1021765131316.html
   My bibliography  Save this article

DC Programming: Overview

Author

Listed:
  • R. Horst

    (University of Trier)

  • N. V. Thoai

    (University of Trier)

Abstract

Mathematical programming problems dealing with functions, each of which can be represented as a difference of two convex functions, are called DC programming problems. The purpose of this overview is to discuss main theoretical results, some applications, and solution methods for this interesting and important class of programming problems. Some modifications and new results on the optimality conditions and development of algorithms are also presented.

Suggested Citation

  • R. Horst & N. V. Thoai, 1999. "DC Programming: Overview," Journal of Optimization Theory and Applications, Springer, vol. 103(1), pages 1-43, October.
  • Handle: RePEc:spr:joptap:v:103:y:1999:i:1:d:10.1023_a:1021765131316
    DOI: 10.1023/A:1021765131316
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1021765131316
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1021765131316?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James E. Falk & Karla R. Hoffman, 1976. "A Successive Underestimation Method for Concave Minimization Problems," Mathematics of Operations Research, INFORMS, vol. 1(3), pages 251-259, August.
    2. Nguyen Van Thoai & Hoang Tuy, 1980. "Convergent Algorithms for Minimizing a Concave Function," Mathematics of Operations Research, INFORMS, vol. 5(4), pages 556-566, November.
    3. R. J. Hillestad, 1975. "Optimization Problems Subject to a Budget Constraint with Economies of Scale," Operations Research, INFORMS, vol. 23(6), pages 1091-1098, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harold P. Benson, 1996. "Deterministic algorithms for constrained concave minimization: A unified critical survey," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(6), pages 765-795, September.
    2. N. V. Thoai, 2010. "Reverse Convex Programming Approach in the Space of Extreme Criteria for Optimization over Efficient Sets," Journal of Optimization Theory and Applications, Springer, vol. 147(2), pages 263-277, November.
    3. Reiner Horst, 1990. "Deterministic methods in constrained global optimization: Some recent advances and new fields of application," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(4), pages 433-471, August.
    4. Ankhili, Z. & Mansouri, A., 2009. "An exact penalty on bilevel programs with linear vector optimization lower level," European Journal of Operational Research, Elsevier, vol. 197(1), pages 36-41, August.
    5. N. V. Thoai, 2000. "Duality Bound Method for the General Quadratic Programming Problem with Quadratic Constraints," Journal of Optimization Theory and Applications, Springer, vol. 107(2), pages 331-354, November.
    6. Collet, J.H., 1983. "Use of temperature-green functions for calculations of second-order susceptibilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 121(1), pages 85-91.
    7. Harold P. Benson & S. Selcuk Erenguc, 1990. "An algorithm for concave integer minimization over a polyhedron," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(4), pages 515-525, August.
    8. Harold P. Benson, 2006. "Maximizing the ratio of two convex functions over a convex set," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(4), pages 309-317, June.
    9. Takahito Kuno & Tomohiro Ishihama, 2016. "A generalization of $$\omega $$ ω -subdivision ensuring convergence of the simplicial algorithm," Computational Optimization and Applications, Springer, vol. 64(2), pages 535-555, June.
    10. Sinha, Ankur & Das, Arka & Anand, Guneshwar & Jayaswal, Sachin, 2023. "A general purpose exact solution method for mixed integer concave minimization problems," European Journal of Operational Research, Elsevier, vol. 309(3), pages 977-992.
    11. Pey-Chun Chen & Pierre Hansen & Brigitte Jaumard & Hoang Tuy, 1998. "Solution of the Multisource Weber and Conditional Weber Problems by D.-C. Programming," Operations Research, INFORMS, vol. 46(4), pages 548-562, August.
    12. Wei Chen & Milind Dawande & Ganesh Janakiraman, 2014. "Fixed-Dimensional Stochastic Dynamic Programs: An Approximation Scheme and an Inventory Application," Operations Research, INFORMS, vol. 62(1), pages 81-103, February.
    13. Queiroz, Marcelo & Humes, Carlos, 2003. "A heuristic for the continuous capacity and flow assignment," European Journal of Operational Research, Elsevier, vol. 146(3), pages 444-459, May.
    14. Sinha, Ankur & Das, Arka & Anand, Guneshwar & Jayaswal, Sachin, 2021. "A General Purpose Exact Solution Method for Mixed Integer Concave Minimization Problems," IIMA Working Papers WP 2021-03-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    15. Nonas, Sigrid Lise & Thorstenson, Anders, 2000. "A combined cutting-stock and lot-sizing problem," European Journal of Operational Research, Elsevier, vol. 120(2), pages 327-342, January.
    16. N. V. Thoai & Y. Yamamoto & A. Yoshise, 2005. "Global Optimization Method for Solving Mathematical Programs with Linear Complementarity Constraints," Journal of Optimization Theory and Applications, Springer, vol. 124(2), pages 467-490, February.
    17. Torki, Abdolhamid & Yajima, Yatsutoshi & Enkawa, Takao, 1996. "A low-rank bilinear programming approach for sub-optimal solution of the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 94(2), pages 384-391, October.
    18. H.A. Le Thi & T. Pham Dinh & L.D. Muu, 2003. "Simplicially-Constrained DC Optimization over Efficient and Weakly Efficient Sets," Journal of Optimization Theory and Applications, Springer, vol. 117(3), pages 503-531, June.
    19. G. Pacelli & M. C. Recchioni, 2000. "Monotone Variable–Metric Algorithm for Linearly Constrained Nonlinear Programming," Journal of Optimization Theory and Applications, Springer, vol. 104(2), pages 255-279, February.
    20. Benson, Harold P., 2006. "Fractional programming with convex quadratic forms and functions," European Journal of Operational Research, Elsevier, vol. 173(2), pages 351-369, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:103:y:1999:i:1:d:10.1023_a:1021765131316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.