IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v105y2021i4d10.1007_s10182-021-00423-7.html
   My bibliography  Save this article

RR-classifier: a nonparametric classification procedure in multidimensional space based on relative ranks

Author

Listed:
  • Ondrej Vencalek

    (Palacky University)

  • Olusola Samuel Makinde

    (Federal University of Technology)

Abstract

Notions of data depth have motivated nonparametric multivariate analysis, especially in supervised learning. Maximum depth classifiers, classifiers based on depth-depth plots and depth distribution classifiers are nonparametric classification methodologies based on the notions of data depth and are Bayes-optimal rule under certain conditions. This paper proposes rank-rank plot for classification. Theoretical properties of the suggested classifier are investigated in some particular cases given by specific distributional assumptions. The performance of the proposed classification method is further investigated using simulated datasets.

Suggested Citation

  • Ondrej Vencalek & Olusola Samuel Makinde, 2021. "RR-classifier: a nonparametric classification procedure in multidimensional space based on relative ranks," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(4), pages 675-693, December.
  • Handle: RePEc:spr:alstar:v:105:y:2021:i:4:d:10.1007_s10182-021-00423-7
    DOI: 10.1007/s10182-021-00423-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-021-00423-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-021-00423-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel Hlubinka & Ondrej Vencalek, 2013. "Depth-Based Classification for Distributions with Nonconvex Support," Journal of Probability and Statistics, Hindawi, vol. 2013, pages 1-7, September.
    2. Vencalek, Ondrej & Pokotylo, Oleksii, 2018. "Depth-weighted Bayes classification," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 1-12.
    3. Davy Paindaveine & Germain Van Bever, 2012. "Nonparametrically Consistent Depth-Based Classifiers," Working Papers ECARES ECARES 2012-014, ULB -- Universite Libre de Bruxelles.
    4. Subhajit Dutta & Anil Ghosh, 2012. "On robust classification using projection depth," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 657-676, June.
    5. Anil K. Ghosh & Probal Chaudhuri, 2005. "On Maximum Depth and Related Classifiers," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(2), pages 327-350, June.
    6. Pavlo Mozharovskyi & Karl Mosler & Tatjana Lange, 2015. "Classifying real-world data with the $${ DD}\alpha $$ D D α -procedure," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(3), pages 287-314, September.
    7. Nedret Billor & Asheber Abebe & Asuman Turkmen & Sai Nudurupati, 2008. "Classification Based on Depth Transvariations," Journal of Classification, Springer;The Classification Society, vol. 25(2), pages 249-260, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vencalek, Ondrej & Pokotylo, Oleksii, 2018. "Depth-weighted Bayes classification," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 1-12.
    2. Francesca Fortunato & Laura Anderlucci & Angela Montanari, 2020. "One‐class classification with application to forensic analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1227-1249, November.
    3. Davy Paindaveine & Germain Van Bever, 2017. "Halfspace Depths for Scatter, Concentration and Shape Matrices," Working Papers ECARES ECARES 2017-19, ULB -- Universite Libre de Bruxelles.
    4. Tatjana Lange & Karl Mosler & Pavlo Mozharovskyi, 2014. "Fast nonparametric classification based on data depth," Statistical Papers, Springer, vol. 55(1), pages 49-69, February.
    5. Anirvan Chakraborty & Probal Chaudhuri, 2014. "On data depth in infinite dimensional spaces," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 303-324, April.
    6. Kotík, Lukáš & Hlubinka, Daniel, 2017. "A weighted localization of halfspace depth and its properties," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 53-69.
    7. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
    8. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
    9. Daouia, Abdelaati & Paindaveine, Davy, 2019. "Multivariate Expectiles, Expectile Depth and Multiple-Output Expectile Regression," TSE Working Papers 19-1022, Toulouse School of Economics (TSE), revised Feb 2023.
    10. Yunlu Jiang & Canhong Wen & Xueqin Wang, 2018. "Adaptive Exponential Power Depth with Application to Classification," Journal of Classification, Springer;The Classification Society, vol. 35(3), pages 466-480, October.
    11. Biau, Gérard & Devroye, Luc & Dujmović, Vida & Krzyżak, Adam, 2012. "An affine invariant k-nearest neighbor regression estimate," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 24-34.
    12. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2017. "Multivariate and functional classification using depth and distance," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 445-466, September.
    13. Subhajit Dutta & Anil Ghosh, 2012. "On robust classification using projection depth," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 657-676, June.
    14. Mia Hubert & Stephan Van der Veeken, 2010. "Robust classification for skewed data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(4), pages 239-254, December.
    15. Panagiotis Tzirakis & Christos Tjortjis, 2017. "T3C: improving a decision tree classification algorithm’s interval splits on continuous attributes," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(2), pages 353-370, June.
    16. Wang, Jin, 2019. "Asymptotics of generalized depth-based spread processes and applications," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 363-380.
    17. Olusola Samuel Makinde, 2019. "Classification rules based on distribution functions of functional depth," Statistical Papers, Springer, vol. 60(3), pages 629-640, June.
    18. Karl Mosler & Pavlo Mozharovskyi, 2017. "Fast DD-classification of functional data," Statistical Papers, Springer, vol. 58(4), pages 1055-1089, December.
    19. repec:hal:spmain:info:hdl:2441/3qnaslliat80pbqa8t90240unj is not listed on IDEAS
    20. Wei Shao & Yijun Zuo, 2020. "Computing the halfspace depth with multiple try algorithm and simulated annealing algorithm," Computational Statistics, Springer, vol. 35(1), pages 203-226, March.
    21. Dyckerhoff, Rainer & Mozharovskyi, Pavlo & Nagy, Stanislav, 2021. "Approximate computation of projection depths," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:105:y:2021:i:4:d:10.1007_s10182-021-00423-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.