IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v74y2022i6d10.1007_s10463-022-00826-6.html
   My bibliography  Save this article

Asymptotic equivalence for nonparametric regression with dependent errors: Gauss–Markov processes

Author

Listed:
  • Holger Dette

    (Ruhr-Universität Bochum)

  • Martin Kroll

    (Ruhr-Universität Bochum)

Abstract

For the class of Gauss–Markov processes we study the problem of asymptotic equivalence of the nonparametric regression model with errors given by the increments of the process and the continuous time model, where a whole path of a sum of a deterministic signal and the Gauss–Markov process can be observed. We derive sufficient conditions which imply asymptotic equivalence of the two models. We verify these conditions for the special cases of Sobolev ellipsoids and Hölder classes with smoothness index $$>1/2$$ > 1 / 2 under mild assumptions on the Gauss–Markov process. To give a counterexample, we show that asymptotic equivalence fails to hold for the special case of Brownian bridge. Our findings demonstrate that the well-known asymptotic equivalence of the Gaussian white noise model and the nonparametric regression model with i.i.d. standard normal errors (see Brown and Low (Ann Stat 24:2384–2398, 1996)) can be extended to a setup with general Gauss–Markov noises.

Suggested Citation

  • Holger Dette & Martin Kroll, 2022. "Asymptotic equivalence for nonparametric regression with dependent errors: Gauss–Markov processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(6), pages 1163-1196, December.
  • Handle: RePEc:spr:aistmt:v:74:y:2022:i:6:d:10.1007_s10463-022-00826-6
    DOI: 10.1007/s10463-022-00826-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-022-00826-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-022-00826-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew V. Carter, 2009. "Asymptotically Sufficient Statistics in Nonparametric Regression Experiments with Correlated Noise," Journal of Probability and Statistics, Hindawi, vol. 2009, pages 1-19, January.
    2. Dette, Holger & Pepelyshev, Andrey & Zhigljavsky, Anatoly, 2016. "Optimal designs for regression models with autoregressive errors," Statistics & Probability Letters, Elsevier, vol. 116(C), pages 107-115.
    3. Iain M. Johnstone & Bernard W. Silverman, 1997. "Wavelet Threshold Estimators for Data with Correlated Noise," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 319-351.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrey Pepelyshev & Anatoly Zhigljavsky & Antanas Žilinskas, 2018. "Performance of global random search algorithms for large dimensions," Journal of Global Optimization, Springer, vol. 71(1), pages 57-71, May.
    2. Wishart, Justin Rory, 2011. "Minimax lower bound for kink location estimators in a nonparametric regression model with long-range dependence," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1871-1875.
    3. Linyuan Li & Yimin Xiao, 2007. "Mean Integrated Squared Error of Nonlinear Wavelet-based Estimators with Long Memory Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(2), pages 299-324, June.
    4. Luan, Yihui & Xie, Zhongjie, 2001. "The wavelet identification for jump points of derivative in regression model," Statistics & Probability Letters, Elsevier, vol. 53(2), pages 167-180, June.
    5. McGinnity, K. & Varbanov, R. & Chicken, E., 2017. "Cross-validated wavelet block thresholding for non-Gaussian errors," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 127-137.
    6. Fryzlewicz, Piotr & Nason, Guy P., 2004. "Smoothing the wavelet periodogram using the Haar-Fisz transform," LSE Research Online Documents on Economics 25231, London School of Economics and Political Science, LSE Library.
    7. repec:jss:jstsof:12:i08 is not listed on IDEAS
    8. Dette, Holger & Schorning, Kirsten & Konstantinou, Maria, 2017. "Optimal designs for comparing regression models with correlated observations," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 273-286.
    9. Beran, Jan & Heiler, Mark A., 2008. "A nonparametric regression cross spectrum for multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 99(4), pages 684-714, April.
    10. Porto, Rogério F. & Morettin, Pedro A. & Aubin, Elisete C.Q., 2008. "Wavelet regression with correlated errors on a piecewise Hölder class," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2739-2743, November.
    11. Capobianco Enrico & Marras Elisabetta & Travaglione Antonella, 2011. "Multiscale Characterization of Signaling Network Dynamics through Features," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-32, November.
    12. Iolanda Lo Cascio, 2007. "Wavelet Analysis and Denoising: New Tools for Economists," Working Papers 600, Queen Mary University of London, School of Economics and Finance.
    13. Capobianco, Enrico, 2003. "Independent Multiresolution Component Analysis and Matching Pursuit," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 385-402, March.
    14. Ramsey James B., 2002. "Wavelets in Economics and Finance: Past and Future," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 6(3), pages 1-29, November.
    15. Graham Horgan, 1999. "Using wavelets for data smoothing: A simulation study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(8), pages 923-932.
    16. Serban, Nicoleta, 2010. "Noise reduction for enhanced component identification in multi-dimensional biomolecular NMR studies," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1051-1065, April.
    17. Marcelo M. Taddeo & Pedro A. Morettin, 2023. "Bayesian P-Splines Applied to Semiparametric Models with Errors Following a Scale Mixture of Normals," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1331-1355, August.
    18. Salcedo, Gladys E. & Porto, Rogério F. & Morettin, Pedro A., 2012. "Comparing non-stationary and irregularly spaced time series," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3921-3934.
    19. Christophe Chesneau & Fabien Navarro, 2017. "On the pointwise mean squared error of a multidimensional term-by-term thresholding wavelet estimator," Working Papers 2017-68, Center for Research in Economics and Statistics.
    20. Capobianco, Enrico, 2004. "Effective decorrelation and space dimensionality reduction of multiscaling volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(1), pages 340-346.
    21. Oleg Shestakov, 2020. "Wavelet Thresholding Risk Estimate for the Model with Random Samples and Correlated Noise," Mathematics, MDPI, vol. 8(3), pages 1-8, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:74:y:2022:i:6:d:10.1007_s10463-022-00826-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.