IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v53y2001i2p167-180.html
   My bibliography  Save this article

The wavelet identification for jump points of derivative in regression model

Author

Listed:
  • Luan, Yihui
  • Xie, Zhongjie

Abstract

A method is proposed to detect the number, locations and heights of jump points of the derivative in the regressive model [eta]i=f([xi]i)+[var epsilon]i, by checking if the empirical indirect wavelet coefficients of data have significantly large absolute values across fine scale levels. The consistency of the estimators is established and practical implementation is discussed. Some simulation examples are given to test our method.

Suggested Citation

  • Luan, Yihui & Xie, Zhongjie, 2001. "The wavelet identification for jump points of derivative in regression model," Statistics & Probability Letters, Elsevier, vol. 53(2), pages 167-180, June.
  • Handle: RePEc:eee:stapro:v:53:y:2001:i:2:p:167-180
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(01)00070-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ogden, Todd & Parzen, Emanuel, 1996. "Data dependent wavelet thresholding in nonparametric regression with change-point applications," Computational Statistics & Data Analysis, Elsevier, vol. 22(1), pages 53-70, June.
    2. Iain M. Johnstone & Bernard W. Silverman, 1997. "Wavelet Threshold Estimators for Data with Correlated Noise," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 319-351.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wishart, Justin Rory, 2011. "Minimax lower bound for kink location estimators in a nonparametric regression model with long-range dependence," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1871-1875.
    2. Linyuan Li & Yimin Xiao, 2007. "Mean Integrated Squared Error of Nonlinear Wavelet-based Estimators with Long Memory Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(2), pages 299-324, June.
    3. Helena Bereś & Krzysztof Bereś & Jolanta Zięba, 2009. "Kurs złotego w świetle analizy falkowej," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 3, pages 61-88.
    4. Fryzlewicz, Piotr & Nason, Guy P., 2004. "Smoothing the wavelet periodogram using the Haar-Fisz transform," LSE Research Online Documents on Economics 25231, London School of Economics and Political Science, LSE Library.
    5. repec:jss:jstsof:12:i08 is not listed on IDEAS
    6. Porto, Rogério F. & Morettin, Pedro A. & Aubin, Elisete C.Q., 2008. "Wavelet regression with correlated errors on a piecewise Hölder class," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2739-2743, November.
    7. Capobianco Enrico & Marras Elisabetta & Travaglione Antonella, 2011. "Multiscale Characterization of Signaling Network Dynamics through Features," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-32, November.
    8. Iolanda Lo Cascio, 2007. "Wavelet Analysis and Denoising: New Tools for Economists," Working Papers 600, Queen Mary University of London, School of Economics and Finance.
    9. Christophe Chesneau & Fabien Navarro, 2017. "On the pointwise mean squared error of a multidimensional term-by-term thresholding wavelet estimator," Working Papers 2017-68, Center for Research in Economics and Statistics.
    10. Capobianco, Enrico, 2004. "Effective decorrelation and space dimensionality reduction of multiscaling volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(1), pages 340-346.
    11. Haven, Emmanuel & Liu, Xiaoquan & Shen, Liya, 2012. "De-noising option prices with the wavelet method," European Journal of Operational Research, Elsevier, vol. 222(1), pages 104-112.
    12. Young Truong & Prakash Patil, 2001. "Asymptotics for Wavelet Based Estimates of Piecewise Smooth Regression for Stationary Time Series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(1), pages 159-178, March.
    13. Sam Efromovich & Jiayi Wu, 2018. "Wavelet Analysis of Big Data Contaminated by Large Noise in an fMRI Study of Neuroplasticity," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1381-1402, December.
    14. Kovac, Arne & Silverman, Bernard W., 1998. "Extending the scope of wavelet regression methods by coefficient-dependent thresholding," Technical Reports 1998,05, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    15. Zhang, Shuanglin & Wong, Man-Yu & Zheng, Zhongguo, 2002. "Wavelet Threshold Estimation of a Regression Function with Random Design," Journal of Multivariate Analysis, Elsevier, vol. 80(2), pages 256-284, February.
    16. Youssef Taleb & Edward A. K. Cohen, 2021. "Multiresolution analysis of point processes and statistical thresholding for Haar wavelet-based intensity estimation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(2), pages 395-423, April.
    17. Linyuan Li & Kewei Lu, 2013. "On rate-optimal nonparametric wavelet regression with long memory moving average errors," Statistical Inference for Stochastic Processes, Springer, vol. 16(2), pages 127-145, July.
    18. Natalie Neumeyer & Ingrid Van Keilegom, 2009. "Change‐Point Tests for the Error Distribution in Non‐parametric Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 518-541, September.
    19. Antoniadis, Anestis & Sapatinas, Theofanis, 2003. "Wavelet methods for continuous-time prediction using Hilbert-valued autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 87(1), pages 133-158, October.
    20. Lee, Kichun & Vidakovic, Brani, 2012. "Semi-supervised wavelet shrinkage," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1681-1691.
    21. Zhang, Ting, 2015. "Semiparametric model building for regression models with time-varying parameters," Journal of Econometrics, Elsevier, vol. 187(1), pages 189-200.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:53:y:2001:i:2:p:167-180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.