IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v238y2024i1p122-135.html
   My bibliography  Save this article

Efficient reliability computation of consecutive- k -out-of- n : F systems with shared components

Author

Listed:
  • Juan Yin
  • Narayanaswamy Balakrishnan
  • Lirong Cui

Abstract

Consecutive- k systems have been studied extensively in reliability engineering. Linear and circular consecutive- k -out-of- n : F systems with shared component(s) have been studied recently by Lin et al. and Yin and Cui . They considered two adjacent subsystems overlapping with one (multiple) shared component(s), respectively, and obtained system reliability formulas by summing the reliability values for all disjoint cases. As their method is computationally intensive, it would be of interest to develop a simpler and more efficient method for the computation of the reliability function of such systems instead of requiring to list all disjoint cases. In this work, by employing the finite Markov chain imbedding approach, we develop unified formulas as products of matrices for evaluating system reliabilities by redefining the state space of the Markov chain. The results developed here decrease the complexity in the computation of system reliability. Furthermore, the new method is also employed to obtain reliability formulas for Markov-dependent cases. A case study of communication systems is finally presented and some numerical examples are presented to illustrate the developed model and the corresponding results.

Suggested Citation

  • Juan Yin & Narayanaswamy Balakrishnan & Lirong Cui, 2024. "Efficient reliability computation of consecutive- k -out-of- n : F systems with shared components," Journal of Risk and Reliability, , vol. 238(1), pages 122-135, February.
  • Handle: RePEc:sae:risrel:v:238:y:2024:i:1:p:122-135
    DOI: 10.1177/1748006X221130540
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X221130540
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X221130540?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiang, Yanping & Levitin, Gregory, 2012. "Combined m-consecutive and k-out-of-n sliding window systems," European Journal of Operational Research, Elsevier, vol. 219(1), pages 105-113.
    2. Stathis Chadjiconstantinidis & Markos V. Koutras, 1999. "Measures of component importance for markov chain imbeddable reliability structures," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(6), pages 613-639, September.
    3. Zarezadeh, S. & Mohammadi, L. & Balakrishnan, N., 2018. "On the joint signature of several coherent systems with some shared components," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1092-1100.
    4. Yin, Juan & Cui, Lirong & Balakrishnan, Narayanaswamy, 2022. "Reliability of consecutive-(k,l)-out-of-n: F systems with shared components under non-homogeneous Markov dependence," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi, He & Balakrishnan, Narayanaswamy & Li, Xiang, 2024. "Joint reliability of linear consecutive k-type systems with shared components in a zigzag structure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Zhu, Xiaojun & Balakrishnan, N., 2023. "Non-parametric inference based on reliability life-test of non-identical coherent systems with application to warranty time," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    3. Serkan Eryilmaz, 2013. "Component importance for linear consecutive‐ k ‐Out‐of‐ n and m ‐Consecutive‐ k ‐Out‐of‐ n systems with exchangeable components," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(4), pages 313-320, June.
    4. Wu, Shaomin & Coolen, Frank P.A., 2013. "A cost-based importance measure for system components: An extension of the Birnbaum importance," European Journal of Operational Research, Elsevier, vol. 225(1), pages 189-195.
    5. Jørgen Vitting Andersen & Roy Cerqueti & Giulia Rotundo, 2017. "Rational expectations and stochastic systems," Documents de travail du Centre d'Economie de la Sorbonne 17060, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Oct 2019.
    6. Lu, Shaoqi & Shi, Daimin & Xiao, Hui, 2019. "Reliability of sliding window systems with two failure modes," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 366-376.
    7. Peng, Rui & Xiao, Hui & Liu, Hanlin, 2017. "Reliability of multi-state systems with a performance sharing group of limited size," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 164-170.
    8. Zarezadeh, Somayeh & Asadi, Majid, 2019. "Coherent systems subject to multiple shocks with applications to preventative maintenance," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 124-132.
    9. Xiao, Hui & Shi, Daimin & Ding, Yi & Peng, Rui, 2016. "Optimal loading and protection of multi-state systems considering performance sharing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 88-95.
    10. Xiahou, Tangfan & Zheng, Yi-Xuan & Liu, Yu & Chen, Hong, 2023. "Reliability modeling of modular k-out-of-n systems with functional dependency: A case study of radar transmitter systems," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    11. Zhao, Xian & Qi, Xin & Wang, Xiaoyue, 2023. "Reliability assessment for coherent systems operating under a generalized mixed shock model with multiple change points of the environment," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    12. Wang, Wei & Fang, Chao & Wang, Yan & Li, Jin, 2022. "Reliability Modeling and Optimization of Circular Multi-State Sliding Time Window System with Sequential Demands," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    13. Yi, He & Balakrishnan, Narayanaswamy & Li, Xiang, 2023. "Reliability of three-dimensional consecutive k-type systems," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    14. Andrews, John & Tolo, Silvia, 2023. "Dynamic and dependent tree theory (D2T2): A framework for the analysis of fault trees with dependent basic events," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    15. Xiaojun Liang & Yinghui Tang, 2019. "The improvement upon the reliability of the k-out-of-n:F system with the repair rates differentiation policy," Operational Research, Springer, vol. 19(2), pages 479-500, June.
    16. Jørgen Vitting Andersen & Roy Cerqueti & Jessica Riccioni, 2023. "Rational expectations as a tool for predicting failure of weighted k-out-of-n reliability systems," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03634370, HAL.
    17. Eryilmaz, Serkan, 2020. "Age-based preventive maintenance for coherent systems with applications to consecutive-k-out-of-n and related systems," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    18. Jørgen Vitting Andersen & Roy Cerqueti & Jessica Riccioni, 2023. "Rational expectations as a tool for predicting failure of weighted k-out-of-n reliability systems," Post-Print hal-03634370, HAL.
    19. Yi, He & Cui, Lirong & Balakrishnan, Narayanaswamy, 2021. "Computation of survival signatures for multi-state consecutive-k systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    20. Wang, Wei & Fang, Chao & Liu, Shan & Xiang, Yisha, 2021. "Reliability analysis and optimization of multi-state sliding window system with sequential demands and time constraints," Reliability Engineering and System Safety, Elsevier, vol. 208(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:238:y:2024:i:1:p:122-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.