IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v185y2019icp124-132.html
   My bibliography  Save this article

Coherent systems subject to multiple shocks with applications to preventative maintenance

Author

Listed:
  • Zarezadeh, Somayeh
  • Asadi, Majid

Abstract

This article is a study on the reliability and preventive maintenance of the coherent systems whose components are subject to failure according to multiple external shocks. We consider an n-component coherent system in which the components are categorized to L different batches, 2 ≤ L ≤ n. It will assume that the components of the batches are subject to failure according to independent external shocks arriving based on independent counting processes. Under this model of components failure, we obtain the survival signature based reliability function of the system lifetime. Then, we investigate the optimal time of preventive maintenance of the system by imposing some cost functions and some criteria on the stationary availability of the system. In order to illustrate the results, some examples have presented in which the failure of components in different batches occur due to the external shocks which arrive according to independent nonhomogeneous Poisson processes with different mean value functions.

Suggested Citation

  • Zarezadeh, Somayeh & Asadi, Majid, 2019. "Coherent systems subject to multiple shocks with applications to preventative maintenance," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 124-132.
  • Handle: RePEc:eee:reensy:v:185:y:2019:i:c:p:124-132
    DOI: 10.1016/j.ress.2018.12.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018308949
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.12.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Nan & Fouladirad, Mitra & Barros, Anne, 2018. "Optimal imperfect maintenance cost analysis of a two-component system with failure interactions," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 24-34.
    2. Eryilmaz, Serkan, 2018. "The number of failed components in a k-out-of-n system consisting of multiple types of components," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 246-250.
    3. Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2015. "Predictive inference for system reliability after common-cause component failures," Reliability Engineering and System Safety, Elsevier, vol. 135(C), pages 27-33.
    4. Cha, Ji Hwan & Finkelstein, Maxim & Levitin, Gregory, 2017. "On preventive maintenance of systems with lifetimes dependent on a random shock process," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 90-97.
    5. Ilya B. Gertsbakh & Yoseph Shpungin & Radislav Vaisman, 2018. "Reliability of a Network with Heterogeneous Components," Springer Series in Reliability Engineering, in: Anatoly Lisnianski & Ilia Frenkel & Alex Karagrigoriou (ed.), Recent Advances in Multi-state Systems Reliability, pages 3-18, Springer.
    6. Feng, Geng & Patelli, Edoardo & Beer, Michael & Coolen, Frank P.A., 2016. "Imprecise system reliability and component importance based on survival signature," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 116-125.
    7. Subhash Kochar & Hari Mukerjee & Francisco J. Samaniego, 1999. "The “signature” of a coherent system and its application to comparisons among systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(5), pages 507-523, August.
    8. Zhang, Nan & Fouladirad, Mitra & Barros, Anne, 2017. "Maintenance analysis of a two-component load-sharing system," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 67-74.
    9. Richard Barlow & Larry Hunter, 1960. "Optimum Preventive Maintenance Policies," Operations Research, INFORMS, vol. 8(1), pages 90-100, February.
    10. Zarezadeh, S. & Mohammadi, L. & Balakrishnan, N., 2018. "On the joint signature of several coherent systems with some shared components," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1092-1100.
    11. Maxim Finkelstein & Ilya Gertsbakh, 2016. "On preventive maintenance of systems subject to shocks," Journal of Risk and Reliability, , vol. 230(2), pages 220-227, April.
    12. Patelli, Edoardo & Feng, Geng & Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2017. "Simulation methods for system reliability using the survival signature," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 327-337.
    13. Maxim Finkelstein & Ilya Gertsbakh, 2015. "‘Time‐free’ preventive maintenance of systems with structures described by signatures," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(6), pages 836-845, November.
    14. Maxim Finkelstein & Ilya Gertsbakh, 2016. "Preventive maintenance of multistate systems subject to shocks," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 32(2), pages 283-291, March.
    15. Toshio Nakagawa, 2008. "Advanced Reliability Models and Maintenance Policies," Springer Series in Reliability Engineering, Springer, number 978-1-84800-294-4, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hashemi, M. & Asadi, M. & Zarezadeh, S., 2020. "Optimal maintenance policies for coherent systems with multi-type components," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    2. Adithya Thaduri, 0. "Nowcast models for train delays based on the railway network status," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-12.
    3. Eryilmaz, Serkan & Kan, Cihangir, 2019. "Reliability and optimal replacement policy for an extreme shock model with a change point," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    4. Wang, Xiaoyue & Ning, Ru & Zhao, Xian & Zhou, Jian, 2022. "Reliability analyses of k-out-of-n: F capability-balanced systems in a multi-source shock environment," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    5. Zarezadeh, Somayeh & Ashrafi, Somayeh, 2019. "On preventive maintenance of networks with components subject to external shocks," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    6. Maryam Kelkinnama & Serkan Eryilmaz, 2023. "Some reliability measures and maintenance policies for a coherent system composed of different types of components," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(1), pages 57-82, January.
    7. Hamdan, K. & Tavangar, M. & Asadi, M., 2021. "Optimal preventive maintenance for repairable weighted k-out-of-n systems," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    8. Adithya Thaduri, 2020. "Nowcast models for train delays based on the railway network status," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 184-195, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hashemi, M. & Asadi, M. & Zarezadeh, S., 2020. "Optimal maintenance policies for coherent systems with multi-type components," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    2. Zarezadeh, Somayeh & Ashrafi, Somayeh, 2019. "On preventive maintenance of networks with components subject to external shocks," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    3. Hamdan, K. & Tavangar, M. & Asadi, M., 2021. "Optimal preventive maintenance for repairable weighted k-out-of-n systems," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    4. Ji Hwan Cha & Maxim Finkelstein, 2020. "On optimal life extension for degrading systems," Journal of Risk and Reliability, , vol. 234(3), pages 487-495, June.
    5. Hindolo George-Williams & Geng Feng & Frank PA Coolen & Michael Beer & Edoardo Patelli, 2019. "Extending the survival signature paradigm to complex systems with non-repairable dependent failures," Journal of Risk and Reliability, , vol. 233(4), pages 505-519, August.
    6. Mi, Jinhua & Beer, Michael & Li, Yan-Feng & Broggi, Matteo & Cheng, Yuhua, 2020. "Reliability and importance analysis of uncertain system with common cause failures based on survival signature," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    7. Alberti, Alexandre R. & Cavalcante, Cristiano A.V., 2020. "A two-scale maintenance policy for protection systems subject to shocks when meeting demands," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    8. Huang, Xianzhen & Aslett, Louis J.M. & Coolen, Frank P.A., 2019. "Reliability analysis of general phased mission systems with a new survival signature," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 416-422.
    9. Tavangar, Mahdi & Hashemi, Marzieh, 2022. "Reliability and maintenance analysis of coherent systems subject to aging and environmental shocks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    10. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    11. Coolen-Maturi, Tahani & Coolen, Frank P.A. & Balakrishnan, Narayanaswamy, 2021. "The joint survival signature of coherent systems with shared components," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    12. Finkelstein, Maxim & Cha, Ji Hwan & Langston, Amy, 2023. "Improving classical optimal age-replacement policies for degrading items," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    13. Salomon, Julian & Winnewisser, Niklas & Wei, Pengfei & Broggi, Matteo & Beer, Michael, 2021. "Efficient reliability analysis of complex systems in consideration of imprecision," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    14. Sheu, Shey-Huei & Liu, Tzu-Hsin & Zhang, Zhe-George & Tsai, Hsin-Nan, 2018. "The generalized age maintenance policies with random working times," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 503-514.
    15. Young Yun, Won & Nakagawa, Toshio, 2010. "Replacement and inspection policies for products with random life cycle," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 161-165.
    16. Sheu, Shey-Huei & Liu, Tzu-Hsin & Zhang, Zhe-George, 2019. "Extended optimal preventive replacement policies with random working cycle," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 398-415.
    17. Eryilmaz, Serkan & Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2018. "Marginal and joint reliability importance based on survival signature," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 118-128.
    18. Hashemi, M. & Asadi, M. & Tavangar, M., 2022. "Optimal maintenance strategies for coherent systems: A warranty dependent approach," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    19. Ji Hwan Cha & Maxim Finkelstein, 2019. "Optimal preventive maintenance for systems having a continuous output and operating in a random environment," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 327-350, July.
    20. Sidibé, I.B. & Khatab, A. & Diallo, C. & Adjallah, K.H., 2016. "Kernel estimator of maintenance optimization model for a stochastically degrading system under different operating environments," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 109-116.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:185:y:2019:i:c:p:124-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.