IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v233y2019i3p379-400.html
   My bibliography  Save this article

Selective maintenance optimization for random phased-mission systems subject to random common cause failures

Author

Listed:
  • Xisheng Jia
  • Wenbin Cao
  • Qiwei Hu

Abstract

In both industrial and military fields, there is such a kind of complicated system termed as phased-mission system, which executes missions composed of several different phases in sequence. The structure, failure behavior, and working conditions of such a system may change from phase to phase. The duration of each phase of such a system involved is random and follows a probability distribution, and the system may suffer some events resulting in simultaneous failures of different elements with different probabilities. In order to guarantee such a system completes the phased-mission successfully, a selective maintenance model for random phased-mission systems subject to random common cause failures is proposed to optimally identify a subset of maintenance activities to be performed on some elements of the system. Thereinto, a novel analytic model is developed to estimate the probability of the maintained random phased-mission system successfully completing the phased-mission, and we compare it with a well-known Monte Carlo Simulation approach. Finally, the proposed selective maintenance model has been successfully applied to an artillery weapon system. Comparative analysis is carried out to compare the proposed model with the traditional ones, including selective maintenance models for deterministic phased-mission systems and deterministic single-phase mission systems. The results show that ignoring some mission properties (e.g. randomness and multiple phases) in selective maintenance optimization will lead to (1) incorrect system and mission modeling, (2) incorrect computation of the probability of the random phased-mission system successfully completing a mission, and/or (3) nonoptimal selective maintenance options.

Suggested Citation

  • Xisheng Jia & Wenbin Cao & Qiwei Hu, 2019. "Selective maintenance optimization for random phased-mission systems subject to random common cause failures," Journal of Risk and Reliability, , vol. 233(3), pages 379-400, June.
  • Handle: RePEc:sae:risrel:v:233:y:2019:i:3:p:379-400
    DOI: 10.1177/1748006X18791724
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X18791724
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X18791724?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Levitin, Gregory & Xing, Liudong & Amari, Suprasad V. & Dai, Yuanshun, 2013. "Reliability of non-repairable phased-mission systems with propagated failures," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 218-228.
    2. Lust, T. & Roux, O. & Riane, F., 2009. "Exact and heuristic methods for the selective maintenance problem," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1166-1177, September.
    3. Khatab, A. & Aghezzaf, E.-H., 2016. "Selective maintenance optimization when quality of imperfect maintenance actions are stochastic," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 182-189.
    4. Wang, Chaonan & Xing, Liudong & Levitin, Gregory, 2014. "Explicit and implicit methods for probabilistic common-cause failure analysis," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 175-184.
    5. Dao, Cuong D. & Zuo, Ming J. & Pandey, Mayank, 2014. "Selective maintenance for multi-state series–parallel systems under economic dependence," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 240-249.
    6. Dao, Cuong D. & Zuo, Ming J., 2017. "Optimal selective maintenance for multi-state systems in variable loading conditions," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 171-180.
    7. Pandey, Mayank & Zuo, Ming J. & Moghaddass, Ramin & Tiwari, M.K., 2013. "Selective maintenance for binary systems under imperfect repair," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 42-51.
    8. Wu, Xin-yang & Wu, Xiao-Yue, 2015. "Extended object-oriented Petri net model for mission reliability simulation of repairable PMS with common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 109-119.
    9. Richard Cassady, C. & Paul Murdock, W. & Pohl, Edward A., 2001. "Selective maintenance for support equipment involving multiple maintenance actions," European Journal of Operational Research, Elsevier, vol. 129(2), pages 252-258, March.
    10. Xing, Liudong & Levitin, Gregory, 2013. "BDD-based reliability evaluation of phased-mission systems with internal/external common-cause failures," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 145-153.
    11. Dao, Cuong D. & Zuo, Ming J., 2017. "Selective maintenance of multi-state systems with structural dependence," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 184-195.
    12. Mayank Pandey & Ming Zuo & Ramin Moghaddass, 2013. "Selective maintenance modeling for a multistate system with multistate components under imperfect maintenance," IISE Transactions, Taylor & Francis Journals, vol. 45(11), pages 1221-1234.
    13. Schneider, Kellie & Richard Cassady, C., 2015. "Evaluation and comparison of alternative fleet-level selective maintenance models," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 178-187.
    14. Abdelhakim Khatab & EL Houssaine Aghezzaf & Claver Diallo & Imene Djelloul, 2017. "Selective maintenance optimisation for series-parallel systems alternating missions and scheduled breaks with stochastic durations," International Journal of Production Research, Taylor & Francis Journals, vol. 55(10), pages 3008-3024, May.
    15. Guo, Chiming & Wang, Wenbin & Guo, Bo & Si, Xiaosheng, 2013. "A maintenance optimization model for mission-oriented systems based on Wiener degradation," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 183-194.
    16. Levitin, Gregory & Xing, Liudong & Yu, Shengji, 2014. "Optimal connecting elements allocation in linear consecutively-connected systems with phased mission and common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 85-94.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaiye Gao & Hui Xiao & Li Qu & Shouyang Wang, 2022. "Optimal interception strategy of air defence missile system considering multiple targets and phases," Journal of Risk and Reliability, , vol. 236(1), pages 138-147, February.
    2. Hamzea Al-Jabouri & Ahmed Saif & Claver Diallo, 2023. "Robust selective maintenance optimization of series–parallel mission-critical systems subject to maintenance quality uncertainty," Computational Management Science, Springer, vol. 20(1), pages 1-31, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenbin Cao & Xisheng Jia & Yu Liu & Qiwei Hu & Jianmin Zhao, 2019. "Selective maintenance optimisation considering random common cause failures and imperfect maintenance," Journal of Risk and Reliability, , vol. 233(3), pages 427-443, June.
    2. Diallo, Claver & Venkatadri, Uday & Khatab, Abdelhakim & Liu, Zhuojun, 2018. "Optimal selective maintenance decisions for large serial k-out-of-n: G systems under imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 234-245.
    3. Chaabane, K. & Khatab, A. & Diallo, C. & Aghezzaf, E.-H. & Venkatadri, U., 2020. "Integrated imperfect multimission selective maintenance and repairpersons assignment problem," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    4. Jiang, Tao & Liu, Yu, 2020. "Selective maintenance strategy for systems executing multiple consecutive missions with uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    5. Shahraki, Ameneh Forouzandeh & Yadav, Om Prakash & Vogiatzis, Chrysafis, 2020. "Selective maintenance optimization for multi-state systems considering stochastically dependent components and stochastic imperfect maintenance actions," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    6. Liu, Yu & Chen, Yiming & Jiang, Tao, 2020. "Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 166-181.
    7. Liu, Lujie & Yang, Jun & Kong, Xuefeng & Xiao, Yiyong, 2022. "Multi-mission selective maintenance and repairpersons assignment problem with stochastic durations," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    8. A. Khatab & C. Diallo & E.-H. Aghezzaf & U. Venkatadri, 2022. "Optimization of the integrated fleet-level imperfect selective maintenance and repairpersons assignment problem," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 703-718, March.
    9. Ghorbani, Milad & Nourelfath, Mustapha & Gendreau, Michel, 2022. "A two-stage stochastic programming model for selective maintenance optimization," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    10. Khatab, A. & Aghezzaf, E.-H., 2016. "Selective maintenance optimization when quality of imperfect maintenance actions are stochastic," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 182-189.
    11. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    12. Liu, Yu & Chen, Yiming & Jiang, Tao, 2018. "On sequence planning for selective maintenance of multi-state systems under stochastic maintenance durations," European Journal of Operational Research, Elsevier, vol. 268(1), pages 113-127.
    13. Yin, Mingang & Liu, Yu & Liu, Shuntao & Chen, Yiming & Yan, Yutao, 2023. "Scheduling heterogeneous repair channels in selective maintenance of multi-state systems with maintenance duration uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    14. Xia, Tangbin & Si, Guojin & Shi, Guo & Zhang, Kaigan & Xi, Lifeng, 2022. "Optimal selective maintenance scheduling for series–parallel systems based on energy efficiency optimization," Applied Energy, Elsevier, vol. 314(C).
    15. Hamzea Al-Jabouri & Ahmed Saif & Claver Diallo, 2023. "Robust selective maintenance optimization of series–parallel mission-critical systems subject to maintenance quality uncertainty," Computational Management Science, Springer, vol. 20(1), pages 1-31, December.
    16. Dao, Cuong D. & Zuo, Ming J., 2017. "Optimal selective maintenance for multi-state systems in variable loading conditions," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 171-180.
    17. Xiaosheng Zhang & Jianqiao Chen & Ben Han & Junxiang Li, 2019. "Multi-mission selective maintenance modelling for multistate systems over a finite time horizon," Journal of Risk and Reliability, , vol. 233(6), pages 1040-1059, December.
    18. Sharma, Pankaj & Kulkarni, Makarand S & Yadav, Vikas, 2017. "A simulation based optimization approach for spare parts forecasting and selective maintenance," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 274-289.
    19. Dao, Cuong D. & Zuo, Ming J., 2017. "Selective maintenance of multi-state systems with structural dependence," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 184-195.
    20. Zhou, Kai-Li & Cheng, De-Jun & Zhang, Han-Bing & Hu, Zhong-tai & Zhang, Chun-Yan, 2023. "Deep learning-based intelligent multilevel predictive maintenance framework considering comprehensive cost," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:233:y:2019:i:3:p:379-400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.