IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v33y2013i5p671-678.html
   My bibliography  Save this article

Evidence Synthesis for Decision Making 6

Author

Listed:
  • Sofia Dias
  • Alex J. Sutton
  • Nicky J. Welton
  • A. E. Ades

Abstract

When multiple parameters are estimated from the same synthesis model, it is likely that correlations will be induced between them. Network meta-analysis (mixed treatment comparisons) is one example where such correlations occur, along with meta-regression and syntheses involving multiple related outcomes. These correlations may affect the uncertainty in incremental net benefit when treatment options are compared in a probabilistic decision model, and it is therefore essential that methods are adopted that propagate the joint parameter uncertainty, including correlation structure, through the cost-effectiveness model. This tutorial paper sets out 4 generic approaches to evidence synthesis that are compatible with probabilistic cost-effectiveness analysis. The first is evidence synthesis by Bayesian posterior estimation and posterior sampling where other parameters of the cost-effectiveness model can be incorporated into the same software platform. Bayesian Markov chain Monte Carlo simulation methods with WinBUGS software are the most popular choice for this option. A second possibility is to conduct evidence synthesis by Bayesian posterior estimation and then export the posterior samples to another package where other parameters are generated and the cost-effectiveness model is evaluated. Frequentist methods of parameter estimation followed by forward Monte Carlo simulation from the maximum likelihood estimates and their variance-covariance matrix represent’a third approach. A fourth option is bootstrap resampling—a frequentist simulation approach to parameter uncertainty. This tutorial paper also provides guidance on how to identify situations in which no correlations exist and therefore simpler approaches can be adopted. Software suitable for transferring data between different packages, and software that provides a user-friendly interface for integrated software platforms, offering investigators a flexible way of examining alternative scenarios, are reviewed.

Suggested Citation

  • Sofia Dias & Alex J. Sutton & Nicky J. Welton & A. E. Ades, 2013. "Evidence Synthesis for Decision Making 6," Medical Decision Making, , vol. 33(5), pages 671-678, July.
  • Handle: RePEc:sae:medema:v:33:y:2013:i:5:p:671-678
    DOI: 10.1177/0272989X13487257
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X13487257
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X13487257?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joanne Lord & Maxwell A. Asante, 1999. "Estimating uncertainty ranges for costs by the bootstrap procedure combined with probabilistic sensitivity analysis," Health Economics, John Wiley & Sons, Ltd., vol. 8(4), pages 323-333, June.
    2. Karl Claxton & John Posnett, 1996. "An economic approach to clinical trial design and research priority‐setting," Health Economics, John Wiley & Sons, Ltd., vol. 5(6), pages 513-524, November.
    3. Kevin P. Brand & Mitchell J. Small, 1995. "Updating Uncertainty in an Integrated Risk Assessment: Conceptual Framework and Methods," Risk Analysis, John Wiley & Sons, vol. 15(6), pages 719-729, December.
    4. Ian R. White, 2011. "Multivariate random-effects meta-regression: Updates to mvmeta," Stata Journal, StataCorp LP, vol. 11(2), pages 255-270, June.
    5. Kimberly M. Thompson & John S. Evans, 1997. "The Value of Improved National Exposure Information for Perchloroethylene (Perc): A Case Study for Dry Cleaners," Risk Analysis, John Wiley & Sons, vol. 17(2), pages 253-271, April.
    6. Karl Claxton & John Posnett, "undated". "An Economic Approach to Clinical Trial Design and Research Priority Setting," Discussion Papers 96/19, Department of Economics, University of York.
    7. Karl Claxton & Mark Sculpher & Chris McCabe & Andrew Briggs & Ron Akehurst & Martin Buxton & John Brazier & Tony O'Hagan, 2005. "Probabilistic sensitivity analysis for NICE technology assessment: not an optional extra," Health Economics, John Wiley & Sons, Ltd., vol. 14(4), pages 339-347, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Binod Neupane & Danielle Richer & Ashley Joel Bonner & Taddele Kibret & Joseph Beyene, 2014. "Network Meta-Analysis Using R: A Review of Currently Available Automated Packages," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-17, December.
    2. David M. Phillippo & Sofia Dias & A. E. Ades & Mark Belger & Alan Brnabic & Alexander Schacht & Daniel Saure & Zbigniew Kadziola & Nicky J. Welton, 2020. "Multilevel network meta‐regression for population‐adjusted treatment comparisons," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1189-1210, June.
    3. Sarah Donegan & Lisa Williams & Sofia Dias & Catrin Tudur-Smith & Nicky Welton, 2015. "Exploring Treatment by Covariate Interactions Using Subgroup Analysis and Meta-Regression in Cochrane Reviews: A Review of Recent Practice," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-17, June.
    4. Mohamed A. Hassan & Wenxi Liu & Daniel J. McDonough & Xiwen Su & Zan Gao, 2022. "Comparative Effectiveness of Physical Activity Intervention Programs on Motor Skills in Children and Adolescents: A Systematic Review and Network Meta-Analysis," IJERPH, MDPI, vol. 19(19), pages 1-12, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. E. Ades & Karl Claxton & Mark Sculpher, 2006. "Evidence synthesis, parameter correlation and probabilistic sensitivity analysis," Health Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 373-381, April.
    2. A. E. Ades & G. Lu & K. Claxton, 2004. "Expected Value of Sample Information Calculations in Medical Decision Modeling," Medical Decision Making, , vol. 24(2), pages 207-227, March.
    3. Nicky J. Welton & Jason J. Madan & Deborah M. Caldwell & Tim J. Peters & Anthony E. Ades, 2014. "Expected Value of Sample Information for Multi-Arm Cluster Randomized Trials with Binary Outcomes," Medical Decision Making, , vol. 34(3), pages 352-365, April.
    4. N. J. Welton & A. E. Ades & D. M. Caldwell & T. J. Peters, 2008. "Research prioritization based on expected value of partial perfect information: a case‐study on interventions to increase uptake of breast cancer screening," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(4), pages 807-841, October.
    5. Karl Claxton & Elisabeth Fenwick & Mark J. Sculpher, 2012. "Decision-making with Uncertainty: The Value of Information," Chapters, in: Andrew M. Jones (ed.), The Elgar Companion to Health Economics, Second Edition, chapter 51, Edward Elgar Publishing.
    6. Neil Hawkins & Mark Sculpher & David Epstein, 2005. "Cost-Effectiveness Analysis of Treatments for Chronic Disease: Using R to Incorporate Time Dependency of Treatment Response," Medical Decision Making, , vol. 25(5), pages 511-519, September.
    7. John Hutton, 2012. "‘Health Economics’ and the evolution of economic evaluation of health technologies," Health Economics, John Wiley & Sons, Ltd., vol. 21(1), pages 13-18, January.
    8. Mark Strong & Jeremy E. Oakley, 2013. "An Efficient Method for Computing Single-Parameter Partial Expected Value of Perfect Information," Medical Decision Making, , vol. 33(6), pages 755-766, August.
    9. Rachael L. Fleurence, 2007. "Setting priorities for research: a practical application of 'payback' and expected value of information," Health Economics, John Wiley & Sons, Ltd., vol. 16(12), pages 1345-1357.
    10. Samer A. Kharroubi & Alan Brennan & Mark Strong, 2011. "Estimating Expected Value of Sample Information for Incomplete Data Models Using Bayesian Approximation," Medical Decision Making, , vol. 31(6), pages 839-852, November.
    11. Stefano Conti & Karl Claxton, 2008. "Dimensions of design space: a decision-theoretic approach to optimal research design," Working Papers 038cherp, Centre for Health Economics, University of York.
    12. Fumie Yokota & Kimberly M. Thompson, 2004. "Value of Information Analysis in Environmental Health Risk Management Decisions: Past, Present, and Future," Risk Analysis, John Wiley & Sons, vol. 24(3), pages 635-650, June.
    13. K. Claxton & P. J. Neumannn & S. S. Araki & M. C. Weinstein, "undated". "Bayesian Value-of-Information Analysis: An Application to a Policy Model of Alzheimer's Disease," Discussion Papers 00/39, Department of Economics, University of York.
    14. Fumie Yokota & Kimberly M. Thompson, 2004. "Value of Information Literature Analysis: A Review of Applications in Health Risk Management," Medical Decision Making, , vol. 24(3), pages 287-298, June.
    15. Mark Strong & Jeremy E. Oakley & Alan Brennan & Penny Breeze, 2015. "Estimating the Expected Value of Sample Information Using the Probabilistic Sensitivity Analysis Sample," Medical Decision Making, , vol. 35(5), pages 570-583, July.
    16. Josh J. Carlson & Rahber Thariani & Josh Roth & Julie Gralow & N. Lynn Henry & Laura Esmail & Pat Deverka & Scott D. Ramsey & Laurence Baker & David L. Veenstra, 2013. "Value-of-Information Analysis within a Stakeholder-Driven Research Prioritization Process in a US Setting: An Application in Cancer Genomics," Medical Decision Making, , vol. 33(4), pages 463-471, May.
    17. Mark Strong & Jeremy E. Oakley & Alan Brennan, 2014. "Estimating Multiparameter Partial Expected Value of Perfect Information from a Probabilistic Sensitivity Analysis Sample," Medical Decision Making, , vol. 34(3), pages 311-326, April.
    18. Jeff Miller & Rolf Ulrich, 2019. "The quest for an optimal alpha," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-13, January.
    19. Hawre Jalal & Jeremy D. Goldhaber-Fiebert & Karen M. Kuntz, 2015. "Computing Expected Value of Partial Sample Information from Probabilistic Sensitivity Analysis Using Linear Regression Metamodeling," Medical Decision Making, , vol. 35(5), pages 584-595, July.
    20. Alan Brennan & Samer A. Kharroubi, 2007. "Expected value of sample information for Weibull survival data," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1205-1225, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:33:y:2013:i:5:p:671-678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.