IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v29y2002i3p431-450.html
   My bibliography  Save this article

A Cellular Automata Model to Simulate Development Density for Urban Planning

Author

Listed:
  • Anthony Gar-On Yeh
  • Xia Li

Abstract

Most cellular automata (CA) urban models assume densities to be uniform for all cells. This is not true in real cities because densities vary substantially from city to city and from urban center to periphery areas. Development density, which affects urban form, is an important factor in urban planning. The authors present a CA model that incorporates density gradient in the simulation of urban development for different urban forms. Development density is obtained from density-decay functions and assigned to the cells when they are converted into developed cells according to CA transition rules. The model, which is based on the concept of ‘grey cells’, can be used as a planning model to explore various combinations of urban forms and development densities. The authors also evaluate and compare the development patterns generated by different density gradients. It is found that development scenarios with high-density development can significantly reduce encroachment on agricultural land and other important environmentally sensitive areas.

Suggested Citation

  • Anthony Gar-On Yeh & Xia Li, 2002. "A Cellular Automata Model to Simulate Development Density for Urban Planning," Environment and Planning B, , vol. 29(3), pages 431-450, June.
  • Handle: RePEc:sae:envirb:v:29:y:2002:i:3:p:431-450
    DOI: 10.1068/b1288
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/b1288
    Download Restriction: no

    File URL: https://libkey.io/10.1068/b1288?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. T V Mesev & P A Longley & M Batty & Y Xie, 1995. "Morphology from Imagery: Detecting and Measuring the Density of Urban Land Use," Environment and Planning A, , vol. 27(5), pages 759-780, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Iacono & David Levinson & Ahmed El-Geneidy, 2007. "Models of Transportation and Land Use Change: A Guide to the Territory," Working Papers 200805, University of Minnesota: Nexus Research Group.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kiril Stanilov, 2002. "Postwar Trends, Land-Cover Changes, and Patterns of Suburban Development: The Case of Greater Seattle," Environment and Planning B, , vol. 29(2), pages 173-195, April.
    2. Martin Herold & Joseph Scepan & Keith C Clarke, 2002. "The Use of Remote Sensing and Landscape Metrics to Describe Structures and Changes in Urban Land Uses," Environment and Planning A, , vol. 34(8), pages 1443-1458, August.
    3. Fulong Wu & David Martin, 2002. "Urban Expansion Simulation of Southeast England Using Population Surface Modelling and Cellular Automata," Environment and Planning A, , vol. 34(10), pages 1855-1876, October.
    4. Britta G Bierwagen, 2005. "Predicting Ecological Connectivity in Urbanizing Landscapes," Environment and Planning B, , vol. 32(5), pages 763-776, October.
    5. F Wu, 1998. "An Empirical Model of Intrametropolitan Land-Use Changes in a Chinese City," Environment and Planning B, , vol. 25(2), pages 245-263, April.
    6. F Wu, 1998. "An Experiment on the Generic Polycentricity of Urban Growth in a Cellular Automatic City," Environment and Planning B, , vol. 25(5), pages 731-752, October.
    7. M Batty & Y Xie, 1996. "Preliminary Evidence for a Theory of the Fractal City," Environment and Planning A, , vol. 28(10), pages 1745-1762, October.
    8. Pengfei Ban & Wei Zhan & Qifeng Yuan & Xiaojian Li, 2021. "Delineating the Urban Areas of a Cross-Boundary City with Open-Access Data: Guangzhou–Foshan, South China," Sustainability, MDPI, vol. 13(5), pages 1-17, March.
    9. Yılmaz, Merve & Terzi, Fatih, 2021. "Measuring the patterns of urban spatial growth of coastal cities in developing countries by geospatial metrics," Land Use Policy, Elsevier, vol. 107(C).
    10. Eric J Heikkila & Ti-Yan Shen & Kai-Zhong Yang, 2003. "Fuzzy Urban Sets: Theory and Application to Desakota Regions in China," Environment and Planning B, , vol. 30(2), pages 239-254, April.
    11. Stuart L Barr & Michael J Barnsley & Alan Steel, 2004. "On the Separability of Urban Land-Use Categories in Fine Spatial Scale Land-Cover Data Using Structural Pattern Recognition," Environment and Planning B, , vol. 31(3), pages 397-418, June.
    12. P A Longley, 1998. "GIS and the Development of Digital Urban Infrastructure," Environment and Planning B, , vol. 25(7), pages 53-56, December.
    13. Paul A Longley & Victor Mesev, 2000. "On the Measurement and Generalisation of Urban Form," Environment and Planning A, , vol. 32(3), pages 473-488, March.
    14. Eric J. Heikkila & Ti-yan Shen & Kai-zhong Yang, 2003. "Fuzzy Urban Sets: Theory and Application to Desakota Regions in China," Working Paper 8617, USC Lusk Center for Real Estate.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:29:y:2002:i:3:p:431-450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.