IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0258581.html
   My bibliography  Save this article

Objective bayesian analysis for multiple repairable systems

Author

Listed:
  • Amanda M E D’Andrea
  • Vera L D Tomazella
  • Hassan M Aljohani
  • Pedro L Ramos
  • Marco P Almeida
  • Francisco Louzada
  • Bruna A W Verssani
  • Amanda B Gazon
  • Ahmed Z Afify

Abstract

This article focus on the analysis of the reliability of multiple identical systems that can have multiple failures over time. A repairable system is defined as a system that can be restored to operating state in the event of a failure. This work under minimal repair, it is assumed that the failure has a power law intensity and the Bayesian approach is used to estimate the unknown parameters. The Bayesian estimators are obtained using two objective priors know as Jeffreys and reference priors. We proved that obtained reference prior is also a matching prior for both parameters, i.e., the credibility intervals have accurate frequentist coverage, while the Jeffreys prior returns unbiased estimates for the parameters. To illustrate the applicability of our Bayesian estimators, a new data set related to the failures of Brazilian sugar cane harvesters is considered.

Suggested Citation

  • Amanda M E D’Andrea & Vera L D Tomazella & Hassan M Aljohani & Pedro L Ramos & Marco P Almeida & Francisco Louzada & Bruna A W Verssani & Amanda B Gazon & Ahmed Z Afify, 2021. "Objective bayesian analysis for multiple repairable systems," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-19, November.
  • Handle: RePEc:plo:pone00:0258581
    DOI: 10.1371/journal.pone.0258581
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0258581
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0258581&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0258581?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mark Berman & T. Rolf Turner, 1992. "Approximating Point Process Likelihoods with Glim," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(1), pages 31-38, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe Espa & Giuseppe Arbia & Diego Giuliani, 2013. "Conditional versus unconditional industrial agglomeration: disentangling spatial dependence and spatial heterogeneity in the analysis of ICT firms’ distribution in Milan," Journal of Geographical Systems, Springer, vol. 15(1), pages 31-50, January.
    2. Leandro, Camila & Jay-Robert, Pierre & Mériguet, Bruno & Houard, Xavier & Renner, Ian W., 2020. "Is my sdm good enough? insights from a citizen science dataset in a point process modeling framework," Ecological Modelling, Elsevier, vol. 438(C).
    3. Christophe Botella & Alexis Joly & Pascal Monestiez & Pierre Bonnet & François Munoz, 2020. "Bias in presence-only niche models related to sampling effort and species niches: Lessons for background point selection," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-18, May.
    4. repec:jss:jstsof:08:i16 is not listed on IDEAS
    5. Giuseppe Arbia & Patrizia Cella & Giuseppe Espa & Diego Giuliani, 2015. "A micro spatial analysis of firm demography: the case of food stores in the area of Trento (Italy)," Empirical Economics, Springer, vol. 48(3), pages 923-937, May.
    6. D'Angelo, Nicoletta & Adelfio, Giada & Mateu, Jorge, 2023. "Locally weighted minimum contrast estimation for spatio-temporal log-Gaussian Cox processes," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    7. repec:jss:jstsof:12:i06 is not listed on IDEAS
    8. Matthew Bognar, 2008. "Bayesian modeling of continuously marked spatial point patterns," Computational Statistics, Springer, vol. 23(3), pages 361-379, July.
    9. Gao, Lisa & Shi, Peng, 2022. "Leveraging high-resolution weather information to predict hail damage claims: A spatial point process for replicated point patterns," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 161-179.
    10. Jeffrey Daniel & Julie Horrocks & Gary J. Umphrey, 2020. "Efficient Modelling of Presence-Only Species Data via Local Background Sampling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(1), pages 90-111, March.
    11. Edith Gabriel, 2014. "Estimating Second-Order Characteristics of Inhomogeneous Spatio-Temporal Point Processes," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 411-431, June.
    12. Hossain, Md. Monir & Lawson, Andrew B., 2009. "Approximate methods in Bayesian point process spatial models," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2831-2842, June.
    13. Florian Ploeckl, 2012. "Space, settlements, towns: the influence of geography and market access on settlement distribution and urbanization," Working Papers 2012/23, Institut d'Economia de Barcelona (IEB).
    14. Ploeckl, Florian, 2021. "The next town over: On the clustering of towns and settlements before modern economic growth," Regional Science and Urban Economics, Elsevier, vol. 89(C).
    15. Florian Ploeckl, 2012. "Space, settlements, towns: the influence of geography and market access on settlement distribution and urbanization," Working Papers 2012/23, Institut d'Economia de Barcelona (IEB).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0258581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.