IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0240205.html
   My bibliography  Save this article

What do we know about SARS-CoV-2 transmission? A systematic review and meta-analysis of the secondary attack rate and associated risk factors

Author

Listed:
  • Wee Chian Koh
  • Lin Naing
  • Liling Chaw
  • Muhammad Ali Rosledzana
  • Mohammad Fathi Alikhan
  • Sirajul Adli Jamaludin
  • Faezah Amin
  • Asiah Omar
  • Alia Shazli
  • Matthew Griffith
  • Roberta Pastore
  • Justin Wong

Abstract

Introduction: Current SARS-CoV-2 containment measures rely on controlling viral transmission. Effective prioritization can be determined by understanding SARS-CoV-2 transmission dynamics. We conducted a systematic review and meta-analyses of the secondary attack rate (SAR) in household and healthcare settings. We also examined whether household transmission differed by symptom status of index case, adult and children, and relationship to index case. Methods: We searched PubMed, medRxiv, and bioRxiv databases between January 1 and July 25, 2020. High-quality studies presenting original data for calculating point estimates and 95% confidence intervals (CI) were included. Random effects models were constructed to pool SAR in household and healthcare settings. Publication bias was assessed by funnel plots and Egger’s meta-regression test. Results: 43 studies met the inclusion criteria for household SAR, 18 for healthcare SAR, and 17 for other settings. The pooled household SAR was 18.1% (95% CI: 15.7%, 20.6%), with significant heterogeneity across studies ranging from 3.9% to 54.9%. SAR of symptomatic index cases was higher than asymptomatic cases (RR: 3.23; 95% CI: 1.46, 7.14). Adults showed higher susceptibility to infection than children (RR: 1.71; 95% CI: 1.35, 2.17). Spouses of index cases were more likely to be infected compared to other household contacts (RR: 2.39; 95% CI: 1.79, 3.19). In healthcare settings, SAR was estimated at 0.7% (95% CI: 0.4%, 1.0%). Discussion: While aggressive contact tracing strategies may be appropriate early in an outbreak, as it progresses, measures should transition to account for setting-specific transmission risk. Quarantine may need to cover entire communities while tracing shifts to identifying transmission hotspots and vulnerable populations. Where possible, confirmed cases should be isolated away from the household.

Suggested Citation

  • Wee Chian Koh & Lin Naing & Liling Chaw & Muhammad Ali Rosledzana & Mohammad Fathi Alikhan & Sirajul Adli Jamaludin & Faezah Amin & Asiah Omar & Alia Shazli & Matthew Griffith & Roberta Pastore & Just, 2020. "What do we know about SARS-CoV-2 transmission? A systematic review and meta-analysis of the secondary attack rate and associated risk factors," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-23, October.
  • Handle: RePEc:plo:pone00:0240205
    DOI: 10.1371/journal.pone.0240205
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0240205
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0240205&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0240205?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yehuda Arav & Eyal Fattal & Ziv Klausner, 2022. "Is the Increased Transmissibility of SARS-CoV-2 Variants Driven by within or Outside-Host Processes?," Mathematics, MDPI, vol. 10(19), pages 1-17, September.
    2. Xi Guo & Abhineet Gupta & Anand Sampat & Chengwei Zhai, 2022. "A stochastic contact network model for assessing outbreak risk of COVID-19 in workplaces," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-23, January.
    3. Spooner, Fiona & Abrams, Jesse F. & Morrissey, Karyn & Shaddick, Gavin & Batty, Michael & Milton, Richard & Dennett, Adam & Lomax, Nik & Malleson, Nick & Nelissen, Natalie & Coleman, Alex & Nur, Jamil, 2021. "A dynamic microsimulation model for epidemics," Social Science & Medicine, Elsevier, vol. 291(C).
    4. Denis Mongin & Nils Bürgisser & Gustavo Laurie & Guillaume Schimmel & Diem-Lan Vu & Stephane Cullati & Delphine Sophie Courvoisier, 2023. "Effect of SARS-CoV-2 prior infection and mRNA vaccination on contagiousness and susceptibility to infection," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0240205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.