IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0235307.html
   My bibliography  Save this article

Modeling quarantine during epidemics and mass-testing using drones

Author

Listed:
  • Leonid Sedov
  • Alexander Krasnochub
  • Valentin Polishchuk

Abstract

We extend the classical SIR epidemic spread model by introducing the “quarantined” compartment. We solve (numerically) the differential equations that govern the extended model and quantify how quarantining “flattens the curve” for the proportion of infected population over time. Furthermore, we explore the potential of using drones to deliver tests, enabling mass-testing for the infection; we give a method to estimate the drone fleet needed to deliver the tests in a metropolitan area. Application of our models to COVID-19 spread in Sweden shows how the proposed methods could substantially decrease the peak number of infected people, almost without increasing the duration of the epidemic.

Suggested Citation

  • Leonid Sedov & Alexander Krasnochub & Valentin Polishchuk, 2020. "Modeling quarantine during epidemics and mass-testing using drones," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-11, June.
  • Handle: RePEc:plo:pone00:0235307
    DOI: 10.1371/journal.pone.0235307
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235307
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0235307&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0235307?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. J. Keeling & M. E. J. Woolhouse & R. M. May & G. Davies & B. T. Grenfell, 2003. "Modelling vaccination strategies against foot-and-mouth disease," Nature, Nature, vol. 421(6919), pages 136-142, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefan Sellman & Kimberly Tsao & Michael J Tildesley & Peter Brommesson & Colleen T Webb & Uno Wennergren & Matt J Keeling & Tom Lindström, 2018. "Need for speed: An optimized gridding approach for spatially explicit disease simulations," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-27, April.
    2. Peyrard, N. & Dieckmann, U. & Franc, A., 2008. "Long-range correlations improve understanding of the influence of network structure on contact dynamics," Theoretical Population Biology, Elsevier, vol. 73(3), pages 383-394.
    3. Wang, Yi & Cao, Jinde & Sun, Gui-Quan & Li, Jing, 2014. "Effect of time delay on pattern dynamics in a spatial epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 137-148.
    4. Pilwon Kim & Chang Hyeong Lee, 2018. "Epidemic Spreading in Complex Networks with Resilient Nodes: Applications to FMD," Complexity, Hindawi, vol. 2018, pages 1-9, March.
    5. Tom Kompas & Pham Van Ha & Hoa-Thi-Minh Nguyen & Graeme Garner & Sharon Roche & Iain East, 2020. "Optimal surveillance against foot-and-mouth disease: A sample average approximation approach," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-21, July.
    6. Kompas, Tom & Ha, Pham Van & Nguyen, Hoa Thi Minh & East, Iain & Roche, Sharon & Garner, Graeme, 2017. "Optimal surveillance against foot-and-mouth disease: the case of bulk milk testing in Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 61(4), October.
    7. Montazeri Hesam & Mozaffarilegha Mozhgan & Little Susan & Beerenwinkel Niko & DeGruttola Victor, 2020. "Bayesian reconstruction of transmission trees from genetic sequences and uncertain infection times," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 19(4-6), pages 1-13, December.
    8. Gashirai, Tinashe B. & Musekwa-Hove, Senelani D. & Lolika, Paride O. & Mushayabasa, Steady, 2020. "Global stability and optimal control analysis of a foot-and-mouth disease model with vaccine failure and environmental transmission," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    9. Ahamad, Mazbahul & Gustafson, Christopher & VanWormer, Elizabeth, 2016. "Ex-post Livestock Diseases, and Pastoralists' Averting Decisions in Tanzania," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235764, Agricultural and Applied Economics Association.
    10. Marco J Morelli & Gaël Thébaud & Joël Chadœuf & Donald P King & Daniel T Haydon & Samuel Soubeyrand, 2012. "A Bayesian Inference Framework to Reconstruct Transmission Trees Using Epidemiological and Genetic Data," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-14, November.
    11. Senapati, Abhishek & Panday, Pijush & Samanta, Sudip & Chattopadhyay, Joydev, 2020. "Disease control through removal of population using Z-control approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    12. Tenzin & Aldo Dekker & Hans Vernooij & Annemarie Bouma & Arjan Stegeman, 2008. "Rate of Foot‐and‐Mouth Disease Virus Transmission by Carriers Quantified from Experimental Data," Risk Analysis, John Wiley & Sons, vol. 28(2), pages 303-309, April.
    13. Tom Lindström & Michael Tildesley & Colleen Webb, 2015. "A Bayesian Ensemble Approach for Epidemiological Projections," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-30, April.
    14. Parham, Paul E. & Singh, Brajendra K. & Ferguson, Neil M., 2008. "Analytic approximation of spatial epidemic models of foot and mouth disease," Theoretical Population Biology, Elsevier, vol. 73(3), pages 349-368.
    15. Hennessy, David A. & Rault, Arnaud, 2023. "On systematically insufficient biosecurity actions and policies to manage infectious animal disease," Ecological Economics, Elsevier, vol. 206(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0235307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.