IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0223875.html
   My bibliography  Save this article

Conformational flexibility of fork-remodeling helicase Rad5 shown by full-ensemble hybrid methods

Author

Listed:
  • Melissa S Gildenberg
  • M Todd Washington

Abstract

Several pathways exist to bypass DNA damage during replication. One such pathway is template switching. The Rad5 protein plays two important roles in template switching: it is an E3 ubiquitin ligase that catalyzes PCNA poly-ubiquitylation and it is a helicase that converts replication forks to chicken foot structures. To understand the structure, conformational flexibility, and mechanism of Rad5, we used a full-ensemble hybrid method combining Langevin dynamics simulations and small-angle X-ray scattering. From these studies, we generated the first experimentally validated, high-resolution structural model of Rad5. We found that Rad5 is more compact and less extended than is suggested by its large amount of predicted intrinsic disorder. Thus, Rad5 likely has a novel intra-molecular interaction that limits the range of conformational space it can sample. We provide evidence for a novel interaction between the HIRAN and the helicase domains of Rad5, and we discuss the biological and mechanistic implications of this.

Suggested Citation

  • Melissa S Gildenberg & M Todd Washington, 2019. "Conformational flexibility of fork-remodeling helicase Rad5 shown by full-ensemble hybrid methods," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-16, October.
  • Handle: RePEc:plo:pone00:0223875
    DOI: 10.1371/journal.pone.0223875
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0223875
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0223875&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0223875?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sebastian Eustermann & Kevin Schall & Dirk Kostrewa & Kristina Lakomek & Mike Strauss & Manuela Moldt & Karl-Peter Hopfner, 2018. "Structural basis for ATP-dependent chromatin remodelling by the INO80 complex," Nature, Nature, vol. 556(7701), pages 386-390, April.
    2. Lucas Farnung & Seychelle M. Vos & Christoph Wigge & Patrick Cramer, 2017. "Nucleosome–Chd1 structure and implications for chromatin remodelling," Nature, Nature, vol. 550(7677), pages 539-542, October.
    3. Philipp Stelter & Helle D. Ulrich, 2003. "Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation," Nature, Nature, vol. 425(6954), pages 188-191, September.
    4. Carsten Hoege & Boris Pfander & George-Lucian Moldovan & George Pyrowolakis & Stefan Jentsch, 2002. "RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO," Nature, Nature, vol. 419(6903), pages 135-141, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sofía Muñoz & Andrew Jones & Céline Bouchoux & Tegan Gilmore & Harshil Patel & Frank Uhlmann, 2022. "Functional crosstalk between the cohesin loader and chromatin remodelers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Li Wang & Jiali Yu & Zishuo Yu & Qianmin Wang & Wanjun Li & Yulei Ren & Zhenguo Chen & Shuang He & Yanhui Xu, 2022. "Structure of nucleosome-bound human PBAF complex," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Luka Bacic & Guillaume Gaullier & Jugal Mohapatra & Guanzhong Mao & Klaus Brackmann & Mikhail Panfilov & Glen Liszczak & Anton Sabantsev & Sebastian Deindl, 2024. "Asymmetric nucleosome PARylation at DNA breaks mediates directional nucleosome sliding by ALC1," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Benjamin M. Spector & Mrutyunjaya Parida & Ming Li & Christopher B. Ball & Jeffery L. Meier & Donal S. Luse & David H. Price, 2022. "Differences in RNA polymerase II complexes and their interactions with surrounding chromatin on human and cytomegalovirus genomes," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. David Flores-Solis & Irina P. Lushpinskaia & Anton A. Polyansky & Arya Changiarath & Marc Boehning & Milana Mirkovic & James Walshe & Lisa M. Pietrek & Patrick Cramer & Lukas S. Stelzl & Bojan Zagrovi, 2023. "Driving forces behind phase separation of the carboxy-terminal domain of RNA polymerase II," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Ashish Kumar Singh & Tamás Schauer & Lena Pfaller & Tobias Straub & Felix Mueller-Planitz, 2021. "The biogenesis and function of nucleosome arrays," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    7. Tanay Thakar & Ashna Dhoonmoon & Joshua Straka & Emily M. Schleicher & Claudia M. Nicolae & George-Lucian Moldovan, 2022. "Lagging strand gap suppression connects BRCA-mediated fork protection to nucleosome assembly through PCNA-dependent CAF-1 recycling," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    8. Un Seng Chio & Eugene Palovcak & Anton A. A. Smith & Henriette Autzen & Elise N. Muñoz & Zanlin Yu & Feng Wang & David A. Agard & Jean-Paul Armache & Geeta J. Narlikar & Yifan Cheng, 2024. "Functionalized graphene-oxide grids enable high-resolution cryo-EM structures of the SNF2h-nucleosome complex without crosslinking," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Ko Sato & Amarjeet Kumar & Keisuke Hamada & Chikako Okada & Asako Oguni & Ayumi Machiyama & Shun Sakuraba & Tomohiro Nishizawa & Osamu Nureki & Hidetoshi Kono & Kazuhiro Ogata & Toru Sengoku, 2021. "Structural basis of the regulation of the normal and oncogenic methylation of nucleosomal histone H3 Lys36 by NSD2," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    10. Chinnu Rose Joseph & Sabrina Dusi & Michele Giannattasio & Dana Branzei, 2022. "Rad51-mediated replication of damaged templates relies on monoSUMOylated DDK kinase," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Yichen Zhong & Hakimeh Moghaddas Sani & Bishnu P. Paudel & Jason K. K. Low & Ana P. G. Silva & Stefan Mueller & Chandrika Deshpande & Santosh Panjikar & Xavier J. Reid & Max J. Bedward & Antoine M. Oi, 2022. "The role of auxiliary domains in modulating CHD4 activity suggests mechanistic commonality between enzyme families," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    12. Jonathan W. Markert & Seychelle M. Vos & Lucas Farnung, 2023. "Structure of the complete Saccharomyces cerevisiae Rpd3S-nucleosome complex," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0223875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.