IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0186822.html
   My bibliography  Save this article

Value-based decision making via sequential sampling with hierarchical competition and attentional modulation

Author

Listed:
  • Jaron T Colas

Abstract

In principle, formal dynamical models of decision making hold the potential to represent fundamental computations underpinning value-based (i.e., preferential) decisions in addition to perceptual decisions. Sequential-sampling models such as the race model and the drift-diffusion model that are grounded in simplicity, analytical tractability, and optimality remain popular, but some of their more recent counterparts have instead been designed with an aim for more feasibility as architectures to be implemented by actual neural systems. Connectionist models are proposed herein at an intermediate level of analysis that bridges mental phenomena and underlying neurophysiological mechanisms. Several such models drawing elements from the established race, drift-diffusion, feedforward-inhibition, divisive-normalization, and competing-accumulator models were tested with respect to fitting empirical data from human participants making choices between foods on the basis of hedonic value rather than a traditional perceptual attribute. Even when considering performance at emulating behavior alone, more neurally plausible models were set apart from more normative race or drift-diffusion models both quantitatively and qualitatively despite remaining parsimonious. To best capture the paradigm, a novel six-parameter computational model was formulated with features including hierarchical levels of competition via mutual inhibition as well as a static approximation of attentional modulation, which promotes “winner-take-all” processing. Moreover, a meta-analysis encompassing several related experiments validated the robustness of model-predicted trends in humans’ value-based choices and concomitant reaction times. These findings have yet further implications for analysis of neurophysiological data in accordance with computational modeling, which is also discussed in this new light.

Suggested Citation

  • Jaron T Colas, 2017. "Value-based decision making via sequential sampling with hierarchical competition and attentional modulation," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-40, October.
  • Handle: RePEc:plo:pone00:0186822
    DOI: 10.1371/journal.pone.0186822
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0186822
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0186822&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0186822?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. Link & R. Heath, 1975. "A sequential theory of psychological discrimination," Psychometrika, Springer;The Psychometric Society, vol. 40(1), pages 77-105, March.
    2. David LaBerge, 1962. "A recruitment theory of simple behavior," Psychometrika, Springer;The Psychometric Society, vol. 27(4), pages 375-396, December.
    3. Mervyn Stone, 1960. "Models for choice-reaction time," Psychometrika, Springer;The Psychometric Society, vol. 25(3), pages 251-260, September.
    4. Alison Harris & Ralph Adolphs & Colin Camerer & Antonio Rangel, 2011. "Dynamic Construction of Stimulus Values in the Ventromedial Prefrontal Cortex," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-13, June.
    5. Roger Shepard, 1957. "Stimulus and response generalization: A stochastic model relating generalization to distance in psychological space," Psychometrika, Springer;The Psychometric Society, vol. 22(4), pages 325-345, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiangbo Yu, 2022. "An elementary mechanism for simultaneously modeling discrete decisions and decision times," System Dynamics Review, System Dynamics Society, vol. 38(3), pages 215-245, July.
    2. Thomas Otter & Joe Johnson & Jörg Rieskamp & Greg Allenby & Jeff Brazell & Adele Diederich & J. Hutchinson & Steven MacEachern & Shiling Ruan & Jim Townsend, 2008. "Sequential sampling models of choice: Some recent advances," Marketing Letters, Springer, vol. 19(3), pages 255-267, December.
    3. Roger Shepard, 1974. "Representation of structure in similarity data: Problems and prospects," Psychometrika, Springer;The Psychometric Society, vol. 39(4), pages 373-421, December.
    4. Inhan Kang & Paul Boeck & Roger Ratcliff, 2022. "Modeling Conditional Dependence of Response Accuracy and Response Time with the Diffusion Item Response Theory Model," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 725-748, June.
    5. Jacob D Davidson & Ahmed El Hady, 2019. "Foraging as an evidence accumulation process," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-25, July.
    6. Michael Brusco & Stephanie Stahl, 2001. "Compact integer-programming models for extracting subsets of stimuli from confusion matrices," Psychometrika, Springer;The Psychometric Society, vol. 66(3), pages 405-419, September.
    7. Milica Milosavljevic & Christof Koch & Antonio Rangel, 2011. "Consumers can make decisions in as little as a third of a second," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 6(6), pages 520-530, August.
    8. Udo Boehm & Maarten Marsman & Han L. J. Maas & Gunter Maris, 2021. "An Attention-Based Diffusion Model for Psychometric Analyses," Psychometrika, Springer;The Psychometric Society, vol. 86(4), pages 938-972, December.
    9. Anna Brown, 2016. "Item Response Models for Forced-Choice Questionnaires: A Common Framework," Psychometrika, Springer;The Psychometric Society, vol. 81(1), pages 135-160, March.
    10. Timothy L. H. Wong & Clifford B. Talbot & Gero Miesenböck, 2023. "Transient photocurrents in a subthreshold evidence accumulator accelerate perceptual decisions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Diego Fernandez Slezak & Mariano Sigman & Guillermo A Cecchi, 2018. "An entropic barriers diffusion theory of decision-making in multiple alternative tasks," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-14, March.
    12. Michael C. Hout & Corbin A. Cunningham & Arryn Robbins & Justin MacDonald, 2018. "Simulating the Fidelity of Data for Large Stimulus Set Sizes and Variable Dimension Estimation in Multidimensional Scaling," SAGE Open, , vol. 8(2), pages 21582440187, April.
    13. Lee Cooper & Masao Nakanishi, 1983. "Two logit models for external analysis of preferences," Psychometrika, Springer;The Psychometric Society, vol. 48(4), pages 607-620, December.
    14. Yoshio Takane & Justine Sergent, 1983. "Multidimensional scaling models for reaction times and same-different judgments," Psychometrika, Springer;The Psychometric Society, vol. 48(3), pages 393-423, September.
    15. Despoina Alempaki & Emina Canic & Timothy L. Mullett & William J. Skylark & Chris Starmer & Neil Stewart & Fabio Tufano, 2019. "Reexamining How Utility and Weighting Functions Get Their Shapes: A Quasi-Adversarial Collaboration Providing a New Interpretation," Management Science, INFORMS, vol. 65(10), pages 4841-4862, October.
    16. Drew Fudenberg & Whitney Newey & Philipp Strack & Tomasz Strzalecki, 2020. "Testing the drift-diffusion model," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(52), pages 33141-33148, December.
    17. Jaron T Colas & Wolfgang M Pauli & Tobias Larsen & J Michael Tyszka & John P O’Doherty, 2017. "Distinct prediction errors in mesostriatal circuits of the human brain mediate learning about the values of both states and actions: evidence from high-resolution fMRI," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-32, October.
    18. Jerome R. Busemeyer & Jörg Rieskamp, 2014. "Psychological research and theories on preferential choice," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 3, pages 49-72, Edward Elgar Publishing.
    19. Ehtibar Dzhafarov, 1993. "Grice-representability of response time distribution families," Psychometrika, Springer;The Psychometric Society, vol. 58(2), pages 281-314, June.
    20. Arkady Konovalov & Ian Krajbich, 2016. "Revealed Indifference: Using Response Times to Infer Preferences," Working Papers 16-01, Ohio State University, Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0186822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.