IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0184148.html
   My bibliography  Save this article

Evidence of complex contagion of information in social media: An experiment using Twitter bots

Author

Listed:
  • Bjarke Mønsted
  • Piotr Sapieżyński
  • Emilio Ferrara
  • Sune Lehmann

Abstract

It has recently become possible to study the dynamics of information diffusion in techno-social systems at scale, due to the emergence of online platforms, such as Twitter, with millions of users. One question that systematically recurs is whether information spreads according to simple or complex dynamics: does each exposure to a piece of information have an independent probability of a user adopting it (simple contagion), or does this probability depend instead on the number of sources of exposure, increasing above some threshold (complex contagion)? Most studies to date are observational and, therefore, unable to disentangle the effects of confounding factors such as social reinforcement, homophily, limited attention, or network community structure. Here we describe a novel controlled experiment that we performed on Twitter using ‘social bots’ deployed to carry out coordinated attempts at spreading information. We propose two Bayesian statistical models describing simple and complex contagion dynamics, and test the competing hypotheses. We provide experimental evidence that the complex contagion model describes the observed information diffusion behavior more accurately than simple contagion. Future applications of our results include more effective defenses against malicious propaganda campaigns on social media, improved marketing and advertisement strategies, and design of effective network intervention techniques.

Suggested Citation

  • Bjarke Mønsted & Piotr Sapieżyński & Emilio Ferrara & Sune Lehmann, 2017. "Evidence of complex contagion of information in social media: An experiment using Twitter bots," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-12, September.
  • Handle: RePEc:plo:pone00:0184148
    DOI: 10.1371/journal.pone.0184148
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0184148
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0184148&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0184148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ho-Chun Herbert Chang & Emilio Ferrara, 2022. "Comparative analysis of social bots and humans during the COVID-19 pandemic," Journal of Computational Social Science, Springer, vol. 5(2), pages 1409-1425, November.
    2. Bertrand Jayles & Ramon Escobedo & Stéphane Cezera & Adrien Blanchet & Tatsuya Kameda & Clément Sire & Guy Théraulaz, 2020. "The impact of incorrect social information on collective wisdom in human groups," Post-Print hal-03019820, HAL.
    3. Lori Beaman & Ariel BenYishay & Jeremy Magruder & Ahmed Mushfiq Mobarak, 2021. "Can Network Theory-Based Targeting Increase Technology Adoption?," American Economic Review, American Economic Association, vol. 111(6), pages 1918-1943, June.
    4. Milad Mirbabaie & Deborah Bunker & Stefan Stieglitz & Annika Deubel, 0. "Who Sets the Tone? Determining the Impact of Convergence Behaviour Archetypes in Social Media Crisis Communication," Information Systems Frontiers, Springer, vol. 0, pages 1-13.
    5. Tracey L. O’Sullivan & Karen P. Phillips, 2019. "From SARS to pandemic influenza: the framing of high-risk populations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(1), pages 103-117, August.
    6. Milad Mirbabaie & Deborah Bunker & Stefan Stieglitz & Annika Deubel, 2020. "Who Sets the Tone? Determining the Impact of Convergence Behaviour Archetypes in Social Media Crisis Communication," Information Systems Frontiers, Springer, vol. 22(2), pages 339-351, April.
    7. Jayles, Bertrand & Escobedo, Ramon & Cezera, Stéphane & Blanchet, Adrien & Kameda, Tatsuya & Sire, Clément & Théraulaz, Guy, 2020. "The impact of incorrect social information on collective wisdom in human groups," TSE Working Papers 1101, Toulouse School of Economics (TSE).
    8. David A. Broniatowski & Valerie F. Reyna, 2020. "To illuminate and motivate: a fuzzy-trace model of the spread of information online," Computational and Mathematical Organization Theory, Springer, vol. 26(4), pages 431-464, December.
    9. Nian, Fuzhong & Liu, Xinghao & Diao, Hongyuan, 2022. "Mechanism of investor behavior propagation in stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    10. Pantano, Eleonora, 2021. "When a luxury brand bursts: Modelling the social media viral effects of negative stereotypes adoption leading to brand hate," Journal of Business Research, Elsevier, vol. 123(C), pages 117-125.
    11. Joshua Uyheng & Kathleen M. Carley, 2020. "Bots and online hate during the COVID-19 pandemic: case studies in the United States and the Philippines," Journal of Computational Social Science, Springer, vol. 3(2), pages 445-468, November.
    12. Weihua Li & Skyler J Cranmer & Zhiming Zheng & Peter J Mucha, 2019. "Infectivity enhances prediction of viral cascades in Twitter," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-12, April.
    13. Ross Schuchard & Andrew Crooks & Anthony Stefanidis & Arie Croitoru, 2019. "Bots fired: examining social bot evidence in online mass shooting conversations," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-12, December.
    14. Nie, Yanyi & Li, Wenyao & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Markovian approach to tackle competing pathogens in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    15. Yevgeniy Golovchenko, 2020. "Measuring the scope of pro-Kremlin disinformation on Twitter," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-11, December.
    16. Li, WenYao & Xue, Xiaoyu & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Competing spreading dynamics in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    17. Kathrin Eismann, 2021. "Diffusion and persistence of false rumors in social media networks: implications of searchability on rumor self-correction on Twitter," Journal of Business Economics, Springer, vol. 91(9), pages 1299-1329, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0184148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.