IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0152491.html
   My bibliography  Save this article

Estimating and Predicting Metal Concentration Using Online Turbidity Values and Water Quality Models in Two Rivers of the Taihu Basin, Eastern China

Author

Listed:
  • Hong Yao
  • Wei Zhuang
  • Yu Qian
  • Bisheng Xia
  • Yang Yang
  • Xin Qian

Abstract

Turbidity (T) has been widely used to detect the occurrence of pollutants in surface water. Using data collected from January 2013 to June 2014 at eleven sites along two rivers feeding the Taihu Basin, China, the relationship between the concentration of five metals (aluminum (Al), titanium (Ti), nickel (Ni), vanadium (V), lead (Pb)) and turbidity was investigated. Metal concentration was determined using inductively coupled plasma mass spectrometry (ICP-MS). The linear regression of metal concentration and turbidity provided a good fit, with R2 = 0.86–0.93 for 72 data sets collected in the industrial river and R2 = 0.60–0.85 for 60 data sets collected in the cleaner river. All the regression presented good linear relationship, leading to the conclusion that the occurrence of the five metals are directly related to suspended solids, and these metal concentration could be approximated using these regression equations. Thus, the linear regression equations were applied to estimate the metal concentration using online turbidity data from January 1 to June 30 in 2014. In the prediction, the WASP 7.5.2 (Water Quality Analysis Simulation Program) model was introduced to interpret the transport and fates of total suspended solids; in addition, metal concentration downstream of the two rivers was predicted. All the relative errors between the estimated and measured metal concentration were within 30%, and those between the predicted and measured values were within 40%. The estimation and prediction process of metals’ concentration indicated that exploring the relationship between metals and turbidity values might be one effective technique for efficient estimation and prediction of metal concentration to facilitate better long-term monitoring with high temporal and spatial density.

Suggested Citation

  • Hong Yao & Wei Zhuang & Yu Qian & Bisheng Xia & Yang Yang & Xin Qian, 2016. "Estimating and Predicting Metal Concentration Using Online Turbidity Values and Water Quality Models in Two Rivers of the Taihu Basin, Eastern China," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-15, March.
  • Handle: RePEc:plo:pone00:0152491
    DOI: 10.1371/journal.pone.0152491
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0152491
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0152491&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0152491?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hong Yao & Xin Qian & Hong Yin & Hailong Gao & Yulei Wang, 2015. "Regional Risk Assessment for Point Source Pollution Based on a Water Quality Model of the Taipu River, China," Risk Analysis, John Wiley & Sons, vol. 35(2), pages 265-277, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuting Bai & Xuebo Jin & Xiaoyi Wang & Tingli Su & Jianlei Kong & Yutian Lu, 2019. "Compound Autoregressive Network for Prediction of Multivariate Time Series," Complexity, Hindawi, vol. 2019, pages 1-11, September.
    2. Hong Yao & Tianhua Ni & Tongzhu Zhang, 2020. "Estimation of phosphorus flux into the sea through one reversing river using continuous turbidities and water quality modeling," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4251-4265, June.
    3. Bai, Jing & Zhao, Jian & Zhang, Zhenyu & Tian, Ziqiang, 2022. "Assessment and a review of research on surface water quality modeling," Ecological Modelling, Elsevier, vol. 466(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dayong Li & Zengchuan Dong & Liyao Shi & Jintao Liu & Zhenye Zhu & Wei Xu, 2019. "Risk Probability Assessment of Sudden Water Pollution in the Plain River Network Based on Random Discharge from Multiple Risk Sources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4051-4065, September.
    2. Hong Yao & Zhen You & Bo Liu, 2016. "Economic Estimation of the Losses Caused by Surface Water Pollution Accidents in China From the Perspective of Water Bodies’ Functions," IJERPH, MDPI, vol. 13(2), pages 1-13, January.
    3. Hong Yao & Tianhua Ni & Tongzhu Zhang, 2020. "Estimation of phosphorus flux into the sea through one reversing river using continuous turbidities and water quality modeling," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4251-4265, June.
    4. Huan Liu & Guangyuan Niu & Qingxiang Zhang & Yuxi Yang & Hong Yao, 2022. "Town-Level Aquatic Environmental Sensitivity Assessment Based on an Improved Ecological Footprint Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 763-777, January.
    5. Hong Yao & Weixin Li & Xin Qian, 2015. "Identification of Major Risk Sources for Surface Water Pollution by Risk Indexes (RI) in the Multi-Provincial Boundary Region of the Taihu Basin, China," IJERPH, MDPI, vol. 12(8), pages 1-21, August.
    6. Liangdong Lu & Hong Huang & Jiuchang Wei & Jia Xu, 2020. "Safety Regulations and the Uncertainty of Work‐Related Road Accident Loss: The Triple Identity of Chinese Local Governments Under Principal–Agent Framework," Risk Analysis, John Wiley & Sons, vol. 40(6), pages 1168-1182, June.
    7. Mengjie Yang & Kai Yang & Yue Che & Shiqiang Lu & Fengyun Sun & Ying Chen & Mengting Li, 2021. "Resolving Transboundary Water Conflicts: Dynamic Evolutionary Analysis Using an Improved GMCR Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3321-3338, August.
    8. Valentina Ferretti & Gilberto Montibeller, 2019. "An Integrated Framework for Environmental Multi‐Impact Spatial Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 257-273, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0152491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.