IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0135492.html
   My bibliography  Save this article

Comparison of Two Hybrid Models for Forecasting the Incidence of Hemorrhagic Fever with Renal Syndrome in Jiangsu Province, China

Author

Listed:
  • Wei Wu
  • Junqiao Guo
  • Shuyi An
  • Peng Guan
  • Yangwu Ren
  • Linzi Xia
  • Baosen Zhou

Abstract

Background: Cases of hemorrhagic fever with renal syndrome (HFRS) are widely distributed in eastern Asia, especially in China, Russia, and Korea. It is proved to be a difficult task to eliminate HFRS completely because of the diverse animal reservoirs and effects of global warming. Reliable forecasting is useful for the prevention and control of HFRS. Methods: Two hybrid models, one composed of nonlinear autoregressive neural network (NARNN) and autoregressive integrated moving average (ARIMA) the other composed of generalized regression neural network (GRNN) and ARIMA were constructed to predict the incidence of HFRS in the future one year. Performances of the two hybrid models were compared with ARIMA model. Results: The ARIMA, ARIMA-NARNN ARIMA-GRNN model fitted and predicted the seasonal fluctuation well. Among the three models, the mean square error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) of ARIMA-NARNN hybrid model was the lowest both in modeling stage and forecasting stage. As for the ARIMA-GRNN hybrid model, the MSE, MAE and MAPE of modeling performance and the MSE and MAE of forecasting performance were less than the ARIMA model, but the MAPE of forecasting performance did not improve. Conclusion: Developing and applying the ARIMA-NARNN hybrid model is an effective method to make us better understand the epidemic characteristics of HFRS and could be helpful to the prevention and control of HFRS.

Suggested Citation

  • Wei Wu & Junqiao Guo & Shuyi An & Peng Guan & Yangwu Ren & Linzi Xia & Baosen Zhou, 2015. "Comparison of Two Hybrid Models for Forecasting the Incidence of Hemorrhagic Fever with Renal Syndrome in Jiangsu Province, China," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-13, August.
  • Handle: RePEc:plo:pone00:0135492
    DOI: 10.1371/journal.pone.0135492
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0135492
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0135492&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0135492?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xingyu Zhang & Yuanyuan Liu & Min Yang & Tao Zhang & Alistair A Young & Xiaosong Li, 2013. "Comparative Study of Four Time Series Methods in Forecasting Typhoid Fever Incidence in China," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-11, May.
    2. Lijing Yu & Lingling Zhou & Li Tan & Hongbo Jiang & Ying Wang & Sheng Wei & Shaofa Nie, 2014. "Application of a New Hybrid Model with Seasonal Auto-Regressive Integrated Moving Average (ARIMA) and Nonlinear Auto-Regressive Neural Network (NARNN) in Forecasting Incidence Cases of HFMD in Shenzhe," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-9, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongbin Wang & Chunjie Xu & Zhende Wang & Shengkui Zhang & Ying Zhu & Juxiang Yuan, 2018. "Time series modeling of pertussis incidence in China from 2004 to 2018 with a novel wavelet based SARIMA-NAR hybrid model," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-23, December.
    2. Kırbaş, İsmail & Sözen, Adnan & Tuncer, Azim Doğuş & Kazancıoğlu, Fikret Şinasi, 2020. "Comparative analysis and forecasting of COVID-19 cases in various European countries with ARIMA, NARNN and LSTM approaches," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md. Abul Kalam Azad & Abu Reza Md. Towfiqul Islam & Md. Siddiqur Rahman & Kurratul Ayen, 2021. "Development of novel hybrid machine learning models for monthly thunderstorm frequency prediction over Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1109-1135, August.
    2. Myladis R. Cogollo & Gilberto González-Parra & Abraham J. Arenas, 2021. "Modeling and Forecasting Cases of RSV Using Artificial Neural Networks," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
    3. Sharadga, Hussein & Hajimirza, Shima & Balog, Robert S., 2020. "Time series forecasting of solar power generation for large-scale photovoltaic plants," Renewable Energy, Elsevier, vol. 150(C), pages 797-807.
    4. Wudi Wei & Junjun Jiang & Hao Liang & Lian Gao & Bingyu Liang & Jiegang Huang & Ning Zang & Yanyan Liao & Jun Yu & Jingzhen Lai & Fengxiang Qin & Jinming Su & Li Ye & Hui Chen, 2016. "Application of a Combined Model with Autoregressive Integrated Moving Average (ARIMA) and Generalized Regression Neural Network (GRNN) in Forecasting Hepatitis Incidence in Heng County, China," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-13, June.
    5. Khan, Firdos & Saeed, Alia & Ali, Shaukat, 2020. "Modelling and forecasting of new cases, deaths and recover cases of COVID-19 by using Vector Autoregressive model in Pakistan," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    6. Xiaoxin Zhu & Yanyan Wang & David Regan & Baiqing Sun, 2020. "A Quantitative Study on Crucial Food Supplies after the 2011 Tohoku Earthquake Based on Time Series Analysis," IJERPH, MDPI, vol. 17(19), pages 1-13, September.
    7. Yongqing Zhao & Rendong Li & Juan Qiu & Xiangdong Sun & Lu Gao & Mingquan Wu, 2019. "Prediction of Human Brucellosis in China Based on Temperature and NDVI," IJERPH, MDPI, vol. 16(21), pages 1-15, November.
    8. Kırbaş, İsmail & Sözen, Adnan & Tuncer, Azim Doğuş & Kazancıoğlu, Fikret Şinasi, 2020. "Comparative analysis and forecasting of COVID-19 cases in various European countries with ARIMA, NARNN and LSTM approaches," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    9. Rui Zhang & Zhen Guo & Yujie Meng & Songwang Wang & Shaoqiong Li & Ran Niu & Yu Wang & Qing Guo & Yonghong Li, 2021. "Comparison of ARIMA and LSTM in Forecasting the Incidence of HFMD Combined and Uncombined with Exogenous Meteorological Variables in Ningbo, China," IJERPH, MDPI, vol. 18(11), pages 1-14, June.
    10. Xingyu Zhang & Tao Zhang & Jiao Pei & Yuanyuan Liu & Xiaosong Li & Pau Medrano-Gracia, 2016. "Time Series Modelling of Syphilis Incidence in China from 2005 to 2012," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-18, February.
    11. Ahmad M Awajan & Mohd Tahir Ismail & S AL Wadi, 2018. "Improving forecasting accuracy for stock market data using EMD-HW bagging," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-20, July.
    12. Vaishnav, Vaibhav & Vajpai, Jayashri, 2020. "Assessment of impact of relaxation in lockdown and forecast of preparation for combating COVID-19 pandemic in India using Group Method of Data Handling," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    13. Qinqin Xu & Runzi Li & Yafei Liu & Cheng Luo & Aiqiang Xu & Fuzhong Xue & Qing Xu & Xiujun Li, 2017. "Forecasting the Incidence of Mumps in Zibo City Based on a SARIMA Model," IJERPH, MDPI, vol. 14(8), pages 1-11, August.
    14. Donghun Lee & Kwanho Kim, 2019. "Recurrent Neural Network-Based Hourly Prediction of Photovoltaic Power Output Using Meteorological Information," Energies, MDPI, vol. 12(2), pages 1-22, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0135492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.