IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0126690.html
   My bibliography  Save this article

A Revised Time Tree of the Asterids: Establishing a Temporal Framework For Evolutionary Studies of the Coffee Family (Rubiaceae)

Author

Listed:
  • Niklas Wikström
  • Kent Kainulainen
  • Sylvain G Razafimandimbison
  • Jenny E E Smedmark
  • Birgitta Bremer

Abstract

Divergence time analyses in the coffee family (Rubiaceae) have all relied on the same Gentianales crown group age estimate, reported by an earlier analysis of the asterids, for defining the upper age bound of the root node in their analyses. However, not only did the asterid analysis suffer from several analytical shortcomings, but the estimate itself has been used in highly inconsistent ways in these Rubiaceae analyses. Based on the original data, we here reanalyze the divergence times of the asterids using relaxed-clock models and 14 fossil-based minimum age constraints. We also expand the data set to include an additional 67 taxa from Rubiaceae sampled across all three subfamilies recognized in the family. Three analyses are conducted: a separate analysis of the asterids, which completely mirrors the original asterid analysis in terms of taxon sample and data; a separate analysis of the Gentianales, where the result from the first analysis is used for defining a secondary root calibration point; and a combined analysis where all taxa are analyzed simultaneously. Results are presented in the form of a time-calibrated phylogeny, and age estimates for asterid groups, Gentianales, and major groups of Rubiaceae are compared and discussed in relation to previously published estimates. Our updated age estimates for major groups of Rubiaceae provide a significant step forward towards the long term goal of establishing a robust temporal framework for the divergence of this biologically diverse and fascinating group of plants.

Suggested Citation

  • Niklas Wikström & Kent Kainulainen & Sylvain G Razafimandimbison & Jenny E E Smedmark & Birgitta Bremer, 2015. "A Revised Time Tree of the Asterids: Establishing a Temporal Framework For Evolutionary Studies of the Coffee Family (Rubiaceae)," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-26, May.
  • Handle: RePEc:plo:pone00:0126690
    DOI: 10.1371/journal.pone.0126690
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126690
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0126690&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0126690?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexei J Drummond & Simon Y W Ho & Matthew J Phillips & Andrew Rambaut, 2006. "Relaxed Phylogenetics and Dating with Confidence," PLOS Biology, Public Library of Science, vol. 4(5), pages 1-1, March.
    2. Vojtech Novotny & Yves Basset & Scott E. Miller & George D. Weiblen & Birgitta Bremer & Lukas Cizek & Pavel Drozd, 2002. "Low host specificity of herbivorous insects in a tropical forest," Nature, Nature, vol. 416(6883), pages 841-844, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Friedrich Ehrendorfer & Michael H J Barfuss & Jean-Francois Manen & Gerald M Schneeweiss, 2018. "Phylogeny, character evolution and spatiotemporal diversification of the species-rich and world-wide distributed tribe Rubieae (Rubiaceae)," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephan Kambach & Ingolf Kühn & Bastien Castagneyrol & Helge Bruelheide, 2016. "The Impact of Tree Diversity on Different Aspects of Insect Herbivory along a Global Temperature Gradient - A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-14, November.
    2. Joachim Schmidt & Lars Opgenoorth & Steffen Höll & Ralf Bastrop, 2012. "Into the Himalayan Exile: The Phylogeography of the Ground Beetle Ethira clade Supports the Tibetan Origin of Forest-Dwelling Himalayan Species Groups," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-15, September.
    3. Dinesh Aggarwal & Ben Warne & Aminu S. Jahun & William L. Hamilton & Thomas Fieldman & Louis Plessis & Verity Hill & Beth Blane & Emmeline Watkins & Elizabeth Wright & Grant Hall & Catherine Ludden & , 2022. "Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Iliana Bista & Jonathan M. D. Wood & Thomas Desvignes & Shane A. McCarthy & Michael Matschiner & Zemin Ning & Alan Tracey & James Torrance & Ying Sims & William Chow & Michelle Smith & Karen Oliver & , 2023. "Genomics of cold adaptations in the Antarctic notothenioid fish radiation," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Haitao Shang & Daniel H. Rothman & Gregory P. Fournier, 2022. "Oxidative metabolisms catalyzed Earth’s oxygenation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Nan Song & Ai-Ping Liang, 2013. "A Preliminary Molecular Phylogeny of Planthoppers (Hemiptera: Fulgoroidea) Based on Nuclear and Mitochondrial DNA Sequences," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-11, March.
    7. Saúl F. Domínguez-Guerrero & Fausto R. Méndez-de la Cruz & Norma L. Manríquez-Morán & Mark E. Olson & Patricia Galina-Tessaro & Diego M. Arenas-Moreno & Adán Bautista- del Moral & Adriana Benítez-Vill, 2022. "Exceptional parallelisms characterize the evolutionary transition to live birth in phrynosomatid lizards," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Mazzoleni, Stefano & Bonanomi, Giuliano & Giannino, Francesco & Incerti, Guido & Dekker, Stefan C. & Rietkerk, Max, 2010. "Modelling the effects of litter decomposition on tree diversity patterns," Ecological Modelling, Elsevier, vol. 221(23), pages 2784-2792.
    9. Mekala Sundaram & Janna R Willoughby & Nathanael I Lichti & Michael A Steele & Robert K Swihart, 2015. "Segregating the Effects of Seed Traits and Common Ancestry of Hardwood Trees on Eastern Gray Squirrel Foraging Decisions," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-16, June.
    10. Mercedes M Burns & Marshal Hedin & Jeffrey W Shultz, 2013. "Comparative Analyses of Reproductive Structures in Harvestmen (Opiliones) Reveal Multiple Transitions from Courtship to Precopulatory Antagonism," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-11, June.
    11. Jonathon D. Gass & Nichola J. Hill & Lambodhar Damodaran & Elena N. Naumova & Felicia B. Nutter & Jonathan A. Runstadler, 2023. "Ecogeographic Drivers of the Spatial Spread of Highly Pathogenic Avian Influenza Outbreaks in Europe and the United States, 2016–Early 2022," IJERPH, MDPI, vol. 20(11), pages 1-17, June.
    12. Nico Neureiter & Peter Ranacher & Nour Efrat-Kowalsky & Gereon A. Kaiping & Robert Weibel & Paul Widmer & Remco R. Bouckaert, 2022. "Detecting contact in language trees: a Bayesian phylogenetic model with horizontal transfer," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-14, December.
    13. Andrew F Magee & Sebastian Höhna & Tetyana I Vasylyeva & Adam D Leaché & Vladimir N Minin, 2020. "Locally adaptive Bayesian birth-death model successfully detects slow and rapid rate shifts," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-23, October.
    14. Stéphane Aris-Brosou, 2007. "Dating Phylogenies with Hybrid Local Molecular Clocks," PLOS ONE, Public Library of Science, vol. 2(9), pages 1-8, September.
    15. Michael D Nowak & Andrew B Smith & Carl Simpson & Derrick J Zwickl, 2013. "A Simple Method for Estimating Informative Node Age Priors for the Fossil Calibration of Molecular Divergence Time Analyses," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-13, June.
    16. Alexandra Gavryushkina & David Welch & Tanja Stadler & Alexei J Drummond, 2014. "Bayesian Inference of Sampled Ancestor Trees for Epidemiology and Fossil Calibration," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-15, December.
    17. Bethany L Dearlove & Simon D W Frost, 2015. "Measuring Asymmetry in Time-Stamped Phylogenies," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-16, July.
    18. Hoan X. Dinh & Davinder Singh & Diana Gomez de la Cruz & Goetz Hensel & Jochen Kumlehn & Martin Mascher & Nils Stein & Dragan Perovic & Michael Ayliffe & Matthew J. Moscou & Robert F. Park & Mohammad , 2022. "The barley leaf rust resistance gene Rph3 encodes a predicted membrane protein and is induced upon infection by avirulent pathotypes of Puccinia hordei," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    19. Qiqi Yang & Ben Wang & Phillipe Lemey & Lu Dong & Tong Mu & R. Alex Wiebe & Fengyi Guo & Nídia Sequeira Trovão & Sang Woo Park & Nicola Lewis & Joseph L.-H. Tsui & Sumali Bajaj & Yachang Cheng & Luoju, 2024. "Synchrony of Bird Migration with Global Dispersal of Avian Influenza Reveals Exposed Bird Orders," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Idrissa Nonmon Sanogo & Claire Guinat & Simon Dellicour & Mohamed Adama Diakité & Mamadou Niang & Ousmane A Koita & Christelle Camus & Mariette F. Ducatez & Mariette Ducatez, 2024. "Genetic insights of H9N2 avian influenza viruses circulating in Mali and phylogeographic patterns in Northern and Western Africa," Post-Print hal-04498485, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0126690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.