IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0102799.html
   My bibliography  Save this article

Online Community Detection for Large Complex Networks

Author

Listed:
  • Gang Pan
  • Wangsheng Zhang
  • Zhaohui Wu
  • Shijian Li

Abstract

Complex networks describe a wide range of systems in nature and society. To understand complex networks, it is crucial to investigate their community structure. In this paper, we develop an online community detection algorithm with linear time complexity for large complex networks. Our algorithm processes a network edge by edge in the order that the network is fed to the algorithm. If a new edge is added, it just updates the existing community structure in constant time, and does not need to re-compute the whole network. Therefore, it can efficiently process large networks in real time. Our algorithm optimizes expected modularity instead of modularity at each step to avoid poor performance. The experiments are carried out using 11 public data sets, and are measured by two criteria, modularity and NMI (Normalized Mutual Information). The results show that our algorithm's running time is less than the commonly used Louvain algorithm while it gives competitive performance.

Suggested Citation

  • Gang Pan & Wangsheng Zhang & Zhaohui Wu & Shijian Li, 2014. "Online Community Detection for Large Complex Networks," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-12, July.
  • Handle: RePEc:plo:pone00:0102799
    DOI: 10.1371/journal.pone.0102799
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0102799
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0102799&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0102799?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carlo Ratti & Stanislav Sobolevsky & Francesco Calabrese & Clio Andris & Jonathan Reades & Mauro Martino & Rob Claxton & Steven H Strogatz, 2010. "Redrawing the Map of Great Britain from a Network of Human Interactions," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghosh, Sumita, 2021. "Urban agriculture potential of home gardens in residential land uses: A case study of regional City of Dubbo, Australia," Land Use Policy, Elsevier, vol. 109(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emanuele Strano & Matheus Viana & Luciano da Fontoura Costa & Alessio Cardillo & Sergio Porta & Vito Latora, 2013. "Urban Street Networks, a Comparative Analysis of Ten European Cities," Environment and Planning B, , vol. 40(6), pages 1071-1086, December.
    2. Bilong Shen & Weimin Zheng & Kathleen M. Carley, 2018. "Urban Activity Mining Framework for Ride Sharing Systems Based on Vehicular Social Networks," Networks and Spatial Economics, Springer, vol. 18(3), pages 705-734, September.
    3. Sol Gamsu & Michael Donnelly, 2021. "Social Network Analysis Methods and the Geography of Education: Regional Divides and Elite Circuits in the School to University Transition in the UK," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 112(4), pages 370-386, September.
    4. Yao Shen & Michael Batty, 2019. "Delineating the perceived functional regions of London from commuting flows," Environment and Planning A, , vol. 51(3), pages 547-550, May.
    5. Enwei Zhu & Stanislav Sobolevsky, 2018. "House Price Modeling with Digital Census," Papers 1809.03834, arXiv.org.
    6. V. I. Blanutsa & K. A. Cherepanov, 2019. "Regional Information Flows: Existing and New Approaches to Geographical Study," Regional Research of Russia, Springer, vol. 9(1), pages 97-106, January.
    7. Ruth Hamilton & Alasdair Rae, 2020. "Regions from the ground up: a network partitioning approach to regional delineation," Environment and Planning B, , vol. 47(5), pages 775-789, June.
    8. Francesc Valls & Josep Roca, 2021. "Visualizing Digital Traces for Sustainable Urban Management: Mapping Tourism Activity on the Virtual Public Space," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    9. Fan, Jijian & Friedman, Daniel & Gair, Jonathan & Iyer, Sriya & Redlicki, Bartosz & Velu, Chander, 2021. "A simulation study of how religious fundamentalism takes root," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 465-481.
    10. Steenbruggen, John & Tranos, Emmanouil & Nijkamp, Peter, 2015. "Data from mobile phone operators: A tool for smarter cities?," Telecommunications Policy, Elsevier, vol. 39(3), pages 335-346.
    11. He, Zhengbing, 2020. "Spatial-temporal fractal of urban agglomeration travel demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    12. Li Shi & Lun Wu & Guanghua Chi & Yu Liu, 2016. "Geographical impacts on social networks from perspectives of space and place: an empirical study using mobile phone data," Journal of Geographical Systems, Springer, vol. 18(4), pages 359-376, October.
    13. Garrett Dash Nelson, 2021. "Communities, Complexity, and the ‘Conchoration’: Network Analysis and the Ontology of Geographic Units," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 112(4), pages 351-369, September.
    14. Steenbruggen, John & Borzacchiello, Maria Teresa & Nijkamp, Peter & Scholten, Henk, 2013. "Data from telecommunication networks for incident management: An exploratory review on transport safety and security," Transport Policy, Elsevier, vol. 28(C), pages 86-102.
    15. Chi, Guanghua & Liu, Yu & Shi, Li & Gao, Yong, 2017. "Understanding the effects of administrative boundary in sampling spatially embedded networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 616-625.
    16. Michele Coscia & Ricardo Hausmann, 2015. "Evidence That Calls-Based and Mobility Networks Are Isomorphic," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-15, December.
    17. Stanislav Sobolevsky & Izabela Sitko & Remi Tachet des Combes & Bartosz Hawelka & Juan Murillo Arias & Carlo Ratti, 2016. "Cities through the Prism of People’s Spending Behavior," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-19, February.
    18. Arnaud Adam & Jean-Charles Delvenne & Isabelle Thomas, 2018. "Detecting communities with the multi-scale Louvain method: robustness test on the metropolitan area of Brussels," Journal of Geographical Systems, Springer, vol. 20(4), pages 363-386, October.
    19. Quanyi Zheng & Xiaolong Zhao & Mengxiao Jin, 2019. "Research on Urban Public Green Space Planning Based on Taxi Data: A Case Study on Three Districts of Shenzhen, China," Sustainability, MDPI, vol. 11(4), pages 1-20, February.
    20. Ding, Liang & Huang, Ziqian & Xiao, Chaowei, 2023. "Are human activities consistent with planning? A big data evaluation of master plan implementation in Changchun," Land Use Policy, Elsevier, vol. 126(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0102799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.