IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0101274.html
   My bibliography  Save this article

Estimation of Infiltration Parameters and the Irrigation Coefficients with the Surface Irrigation Advance Distance

Author

Listed:
  • Zhou Beibei
  • Wang Quanjiu
  • Tan Shuai

Abstract

A theory based on Manning roughness equation, Philip equation and water balance equation was developed which only employed the advance distance in the calculation of the infiltration parameters and irrigation coefficients in both the border irrigation and the surge irrigation. The improved procedure was validated with both the border irrigation and surge irrigation experiments. The main results are shown as follows. Infiltration parameters of the Philip equation could be calculated accurately only using water advance distance in the irrigation process comparing to the experimental data. With the calculated parameters and the water balance equation, the irrigation coefficients were also estimated. The water advance velocity should be measured at about 0.5 m to 1.0 m far from the water advance in the experimental corn fields.

Suggested Citation

  • Zhou Beibei & Wang Quanjiu & Tan Shuai, 2014. "Estimation of Infiltration Parameters and the Irrigation Coefficients with the Surface Irrigation Advance Distance," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-8, July.
  • Handle: RePEc:plo:pone00:0101274
    DOI: 10.1371/journal.pone.0101274
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0101274
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0101274&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0101274?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dongli She & Dongdong Liu & Yongqiu Xia & Ming’an Shao, 2014. "Modeling Effects of Land use and Vegetation Density on Soil Water Dynamics: Implications on Water Resource Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 2063-2076, May.
    2. Foroud, N. & George, E. St. & Entz, T., 1996. "Determination of infiltration rate from border irrigation advance and recession trajectories," Agricultural Water Management, Elsevier, vol. 30(2), pages 133-142, April.
    3. Wang, Wen-Yan & Luo, Wan & Wang, Zhi-Rong, 2005. "Surge flow irrigation with sediment-laden water in northwestern China," Agricultural Water Management, Elsevier, vol. 75(1), pages 1-9, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Zhuo & Dawei Han & Qiang Dai & Tanvir Islam & Prashant Srivastava, 2015. "Appraisal of NLDAS-2 Multi-Model Simulated Soil Moistures for Hydrological Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3503-3517, August.
    2. Liu, Bingxia & Shao, Ming’an, 2015. "Modeling soil–water dynamics and soil–water carrying capacity for vegetation on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 159(C), pages 176-184.
    3. Huang, Yongmei & Yu, Xiaona & Li, Engui & Chen, Huiying & Li, Liu & Wu, Xiuchen & Li, Xiaoyan, 2017. "A process-based water balance model for semi-arid ecosystems: A case study of psammophytic ecosystems in Mu Us Sandland, Inner Mongolia, China," Ecological Modelling, Elsevier, vol. 353(C), pages 77-85.
    4. Amer, Abdelmonem Mohamed, 2011. "Effects of water infiltration and storage in cultivated soil on surface irrigation," Agricultural Water Management, Elsevier, vol. 98(5), pages 815-822, March.
    5. Qiang Fu & Long-Bin Lu & Jin-Bai Huang, 2014. "Numerical Analysis of Surface Runoff for the Liudaogou Drainage Basin in the North Loess Plateau, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4809-4822, October.
    6. Abdelmonem M. AMER & Kamal H. AMER, 2010. "Surface irrigation management in relation to water infiltration and distribution in soils," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 5(3), pages 75-87.
    7. Wei Liang & Dan Bai & Zhao Jin & Yuchi You & Jiaxing Li & Yuting Yang, 2015. "A Study on the Streamflow Change and its Relationship with Climate Change and Ecological Restoration Measures in a Sediment Concentrated Region in the Loess Plateau, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 4045-4060, September.
    8. Sha Li & Wei Liang & Weibin Zhang & Qinghua Liu, 2016. "Response of Soil Moisture to Hydro-meteorological Variables Under Different Precipitation Gradients in the Yellow River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(6), pages 1867-1884, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0101274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.