IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0089017.html
   My bibliography  Save this article

Quantum Biology on the Edge of Quantum Chaos

Author

Listed:
  • Gabor Vattay
  • Stuart Kauffman
  • Samuli Niiranen

Abstract

We give a new explanation for why some biological systems can stay quantum coherent for a long time at room temperature, one of the fundamental puzzles of quantum biology. We show that systems with the right level of complexity between chaos and regularity can increase their coherence time by orders of magnitude. Systems near Critical Quantum Chaos or Metal-Insulator Transition (MIT) can have long coherence times and coherent transport at the same time. The new theory tested in a realistic light harvesting system model can reproduce the scaling of critical fluctuations reported in recent experiments. Scaling of return probability in the FMO light harvesting complex shows the signs of universal return probability decay observed at critical MIT. The results may open up new possibilities to design low loss energy and information transport systems in this Poised Realm hovering reversibly between quantum coherence and classicality.

Suggested Citation

  • Gabor Vattay & Stuart Kauffman & Samuli Niiranen, 2014. "Quantum Biology on the Edge of Quantum Chaos," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-6, March.
  • Handle: RePEc:plo:pone00:0089017
    DOI: 10.1371/journal.pone.0089017
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0089017
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0089017&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0089017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Elisabetta Collini & Cathy Y. Wong & Krystyna E. Wilk & Paul M. G. Curmi & Paul Brumer & Gregory D. Scholes, 2010. "Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature," Nature, Nature, vol. 463(7281), pages 644-647, February.
    2. Gregory S. Engel & Tessa R. Calhoun & Elizabeth L. Read & Tae-Kyu Ahn & Tomáš Mančal & Yuan-Chung Cheng & Robert E. Blankenship & Graham R. Fleming, 2007. "Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems," Nature, Nature, vol. 446(7137), pages 782-786, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reda M. El-Shishtawy & Robert Haddon & Saleh Al-Heniti & Bahaaudin Raffah & Sayed Abdel-Khalek & Kamal Berrada & Yas Al-Hadeethi, 2016. "Realistic Quantum Control of Energy Transfer in Photosynthetic Processes," Energies, MDPI, vol. 9(12), pages 1-11, December.
    2. Di Molfetta, Giuseppe & Brachet, Marc & Debbasch, Fabrice, 2014. "Quantum walks in artificial electric and gravitational fields," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 157-168.
    3. Arif Ullah & Pavlo O. Dral, 2022. "Predicting the future of excitation energy transfer in light-harvesting complex with artificial intelligence-based quantum dynamics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Longo, Giuseppe & Montévil, Maël, 2013. "Extended criticality, phase spaces and enablement in biology," Chaos, Solitons & Fractals, Elsevier, vol. 55(C), pages 64-79.
    5. Tobias Eul & Eva Prinz & Michael Hartelt & Benjamin Frisch & Martin Aeschlimann & Benjamin Stadtmüller, 2022. "Coherent response of the electronic system driven by non-interfering laser pulses," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Arnault, Pablo & Debbasch, Fabrice, 2016. "Landau levels for discrete-time quantum walks in artificial magnetic fields," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 179-191.
    7. Ringsmuth, Andrew K. & Landsberg, Michael J. & Hankamer, Ben, 2016. "Can photosynthesis enable a global transition from fossil fuels to solar fuels, to mitigate climate change and fuel-supply limitations?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 134-163.
    8. J.-B. Trebbia & Q. Deplano & P. Tamarat & B. Lounis, 2022. "Tailoring the superradiant and subradiant nature of two coherently coupled quantum emitters," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Shirmovsky, S.Eh. & Shulga, D.V., 2023. "Quantum relaxation processes in microtubule tryptophan system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    10. Packer, Mike, 2009. "Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy," Energy Policy, Elsevier, vol. 37(9), pages 3428-3437, September.
    11. Carsten Lippe & Tanita Klas & Jana Bender & Patrick Mischke & Thomas Niederprüm & Herwig Ott, 2021. "Experimental realization of a 3D random hopping model," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    12. Shekaari, Ashkan & Jafari, Mahmoud, 2020. "Non-equilibrium thermodynamic properties and internal dynamics of 32-residue beta amyloid fibrils," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    13. Alharbi, Fahhad H. & Kais, Sabre, 2015. "Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1073-1089.
    14. Vasileios Kapsalis & Grigorios Kyriakopoulos & Miltiadis Zamparas & Athanasios Tolis, 2021. "Investigation of the Photon to Charge Conversion and Its Implication on Photovoltaic Cell Efficient Operation," Energies, MDPI, vol. 14(11), pages 1-16, May.
    15. Jon G. C. Kragskow & Jonathan Marbey & Christian D. Buch & Joscha Nehrkorn & Mykhaylo Ozerov & Stergios Piligkos & Stephen Hill & Nicholas F. Chilton, 2022. "Analysis of vibronic coupling in a 4f molecular magnet with FIRMS," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Qian, Xiaohui & Zeng, Congzhi & Zhou, Nengji, 2021. "Quantum criticality of the Ohmic spin-boson model in a high dense spectrum: Symmetries, quantum fluctuations and correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    17. Daniel Manzano, 2013. "Quantum Transport in Networks and Photosynthetic Complexes at the Steady State," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-8, February.
    18. Kai Müller & Karl S. Schellhammer & Nico Gräßler & Bipasha Debnath & Fupin Liu & Yulia Krupskaya & Karl Leo & Martin Knupfer & Frank Ortmann, 2023. "Directed exciton transport highways in organic semiconductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Monica Gagliano, 2013. "Seeing Green: The Re -discovery of Plants and Nature’s Wisdom," Societies, MDPI, vol. 3(1), pages 1-11, March.
    20. Ryan Puskar & Chloe Truong & Kyle Swain & Saborni Chowdhury & Ka-Yi Chan & Shan Li & Kai-Wen Cheng & Ting Yu Wang & Yu-Ping Poh & Yuval Mazor & Haijun Liu & Tsui-Fen Chou & Brent L. Nannenga & Po-Lin , 2022. "Molecular asymmetry of a photosynthetic supercomplex from green sulfur bacteria," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0089017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.