IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0055207.html
   My bibliography  Save this article

Characterization of Transcriptional Changes in ERG Rearrangement-Positive Prostate Cancer Identifies the Regulation of Metabolic Sensors Such as Neuropeptide Y

Author

Listed:
  • Petra Massoner
  • Karl G Kugler
  • Karin Unterberger
  • Ruprecht Kuner
  • Laurin A J Mueller
  • Maria Fälth
  • Georg Schäfer
  • Christof Seifarth
  • Simone Ecker
  • Irmgard Verdorfer
  • Armin Graber
  • Holger Sültmann
  • Helmut Klocker

Abstract

ERG gene rearrangements are found in about one half of all prostate cancers. Functional analyses do not fully explain the selective pressure causing ERG rearrangement during the development of prostate cancer. To identify transcriptional changes in prostate cancer, including tumors with ERG gene rearrangements, we performed a meta-analysis on published gene expression data followed by validations on mRNA and protein levels as well as first functional investigations. Eight expression studies (n = 561) on human prostate tissues were included in the meta-analysis. Transcriptional changes between prostate cancer and non-cancerous prostate, as well as ERG rearrangement-positive (ERG+) and ERG rearrangement-negative (ERG−) prostate cancer, were analyzed. Detailed results can be accessed through an online database. We validated our meta-analysis using data from our own independent microarray study (n = 57). 84% and 49% (fold-change>2 and >1.5, respectively) of all transcriptional changes between ERG+ and ERG− prostate cancer determined by meta-analysis were verified in the validation study. Selected targets were confirmed by immunohistochemistry: NPY and PLA2G7 (up-regulated in ERG+ cancers), and AZGP1 and TFF3 (down-regulated in ERG+ cancers). First functional investigations for one of the most prominent ERG rearrangement-associated genes - neuropeptide Y (NPY) - revealed increased glucose uptake in vitro indicating the potential role of NPY in regulating cellular metabolism. In summary, we found robust population-independent transcriptional changes in prostate cancer and first signs of ERG rearrangements inducing metabolic changes in cancer cells by activating major metabolic signaling molecules like NPY. Our study indicates that metabolic changes possibly contribute to the selective pressure favoring ERG rearrangements in prostate cancer.

Suggested Citation

  • Petra Massoner & Karl G Kugler & Karin Unterberger & Ruprecht Kuner & Laurin A J Mueller & Maria Fälth & Georg Schäfer & Christof Seifarth & Simone Ecker & Irmgard Verdorfer & Armin Graber & Holger Sü, 2013. "Characterization of Transcriptional Changes in ERG Rearrangement-Positive Prostate Cancer Identifies the Regulation of Metabolic Sensors Such as Neuropeptide Y," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-11, February.
  • Handle: RePEc:plo:pone00:0055207
    DOI: 10.1371/journal.pone.0055207
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0055207
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0055207&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0055207?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Scott A. Tomlins & Bharathi Laxman & Saravana M. Dhanasekaran & Beth E. Helgeson & Xuhong Cao & David S. Morris & Anjana Menon & Xiaojun Jing & Qi Cao & Bo Han & Jindan Yu & Lei Wang & James E. Montie, 2007. "Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer," Nature, Nature, vol. 448(7153), pages 595-599, August.
    2. Smyth Gordon K, 2004. "Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-28, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aaron C Ericsson & J Wade Davis & William Spollen & Nathan Bivens & Scott Givan & Catherine E Hagan & Mark McIntosh & Craig L Franklin, 2015. "Effects of Vendor and Genetic Background on the Composition of the Fecal Microbiota of Inbred Mice," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-19, February.
    2. Hossain, Ahmed & Beyene, Joseph & Willan, Andrew R. & Hu, Pingzhao, 2009. "A flexible approximate likelihood ratio test for detecting differential expression in microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3685-3695, August.
    3. Xiaohong Li & Guy N Brock & Eric C Rouchka & Nigel G F Cooper & Dongfeng Wu & Timothy E O’Toole & Ryan S Gill & Abdallah M Eteleeb & Liz O’Brien & Shesh N Rai, 2017. "A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-22, May.
    4. Kerr Kathleen F., 2012. "Optimality Criteria for the Design of 2-Color Microarray Studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(1), pages 1-9, January.
    5. Ambroise Jérôme & Bearzatto Bertrand & Robert Annie & Macq Benoit & Gala Jean-Luc, 2012. "Combining Multiple Laser Scans of Spotted Microarrays by Means of a Two-Way ANOVA Model," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-20, February.
    6. J. McClatchy & R. Strogantsev & E. Wolfe & H. Y. Lin & M. Mohammadhosseini & B. A. Davis & C. Eden & D. Goldman & W. H. Fleming & P. Conley & G. Wu & L. Cimmino & H. Mohammed & A. Agarwal, 2023. "Clonal hematopoiesis related TET2 loss-of-function impedes IL1β-mediated epigenetic reprogramming in hematopoietic stem and progenitor cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Alexandra Gyurdieva & Stefan Zajic & Ya-Fang Chang & E. Andres Houseman & Shan Zhong & Jaegil Kim & Michael Nathenson & Thomas Faitg & Mary Woessner & David C. Turner & Aisha N. Hasan & John Glod & Ro, 2022. "Biomarker correlates with response to NY-ESO-1 TCR T cells in patients with synovial sarcoma," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    8. Sora Yoon & Seon-Young Kim & Dougu Nam, 2016. "Improving Gene-Set Enrichment Analysis of RNA-Seq Data with Small Replicates," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-16, November.
    9. Yu Lianbo & Gulati Parul & Fernandez Soledad & Pennell Michael & Kirschner Lawrence & Jarjoura David, 2011. "Fully Moderated T-statistic for Small Sample Size Gene Expression Arrays," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, September.
    10. Chaofeng Yuan & Wensheng Zhu & Xuming He & Jianhua Guo, 2019. "A mixture factor model with applications to microarray data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 60-76, March.
    11. Nan Li & Matthew N. McCall & Zhijin Wu, 2017. "Establishing Informative Prior for Gene Expression Variance from Public Databases," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 160-177, June.
    12. Brian Caffo & Liu Dongmei & Giovanni Parmigiani, 2004. "Power Conjugate Multilevel Models with Applications to Genomics," Johns Hopkins University Dept. of Biostatistics Working Paper Series 1062, Berkeley Electronic Press.
    13. Nott, David J. & Yu, Zeming & Chan, Eva & Cotsapas, Chris & Cowley, Mark J. & Pulvers, Jeremy & Williams, Rohan & Little, Peter, 2007. "Hierarchical Bayes variable selection and microarray experiments," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 852-872, April.
    14. Santu Ghosh & Alan M. Polansky, 2022. "Large-Scale Simultaneous Testing Using Kernel Density Estimation," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 808-843, August.
    15. Qianxing Mo & Faming Liang, 2010. "Bayesian Modeling of ChIP-chip Data Through a High-Order Ising Model," Biometrics, The International Biometric Society, vol. 66(4), pages 1284-1294, December.
    16. Ahmed Hossain & Hafiz T.A. Khan, 2016. "Identification of genomic markers correlated with sensitivity in solid tumors to Dasatinib using sparse principal components," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2538-2549, October.
    17. Alexander Kaever & Manuel Landesfeind & Kirstin Feussner & Burkhard Morgenstern & Ivo Feussner & Peter Meinicke, 2014. "Meta-Analysis of Pathway Enrichment: Combining Independent and Dependent Omics Data Sets," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-12, February.
    18. Iqbal Mahmud & Guimei Tian & Jia Wang & Tarun E. Hutchinson & Brandon J. Kim & Nikee Awasthee & Seth Hale & Chengcheng Meng & Allison Moore & Liming Zhao & Jessica E. Lewis & Aaron Waddell & Shangtao , 2023. "DAXX drives de novo lipogenesis and contributes to tumorigenesis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    19. Nyangoma Stephen O. & Collins Stuart I. & Altman Douglas G. & Johnson Philip & Billingham Lucinda J., 2012. "Sample Size Calculations for Designing Clinical Proteomic Profiling Studies Using Mass Spectrometry," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-42, February.
    20. Erminia Donnarumma & Michael Kohlhaas & Elodie Vimont & Etienne Kornobis & Thibault Chaze & Quentin Giai Gianetto & Mariette Matondo & Maryse Moya-Nilges & Christoph Maack & Timothy Wai, 2022. "Mitochondrial Fission Process 1 controls inner membrane integrity and protects against heart failure," Nature Communications, Nature, vol. 13(1), pages 1-24, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0055207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.