IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0050941.html
   My bibliography  Save this article

Decelerating Mortality Rates in Older Ages and its Prospects through Lee-Carter Approach

Author

Listed:
  • Awdhesh Yadav
  • Suryakant Yadav
  • Ranjana Kesarwani

Abstract

The present study attempts to study the age pattern mortality and prospects through Lee-Carter approach. The objectives of the study are to examine the trend of mortality decline and life expectancy. Contemporaneously, we have projected life expectancy up to 2025, projecting ASDR using Lee-Carter method. Life table aging rate (LAR) used to estimate the rate of mortality deceleration. Overtime, LAR increased and during recent decade it remained more or less unchanged. By age, LAR significant increased in the oldest of old. The slope is steepest in the oldest of old in the recent decade. The rates of mortality increased in oldest of old as the age group is more vulnerable to chronic disease and vulnerable to identifiable risk factors for virtually every disease, marked by senility. The analysis revealed that the level of mortality is not declining but rate of acceleration is declining and is further expected to decline. By the year 2025, the age specific death rates for the age group 5–9 and 10–14 will go below one per thousand.Life expectancy will attained as high as 73 and 79 years for male and female and is further expected to increase linearly. 71 percent of total female birth and 57 percent of total male birth will survive up to age 70+. Also the findings revealed that mortality rate is declining with constant rate up to age 70 and thereafter, the mortality rate accelerates and this holds true for both sexes.

Suggested Citation

  • Awdhesh Yadav & Suryakant Yadav & Ranjana Kesarwani, 2012. "Decelerating Mortality Rates in Older Ages and its Prospects through Lee-Carter Approach," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-9, December.
  • Handle: RePEc:plo:pone00:0050941
    DOI: 10.1371/journal.pone.0050941
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0050941
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0050941&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0050941?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ansley Coale & Shaomin Li, 1991. "The Effect of Age Misreporting in China on the Calculation of Mortality Rates at Very High Ages," Demography, Springer;Population Association of America (PAA), vol. 28(2), pages 293-301, May.
    2. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    3. Shiro Horiuchi & John Wilmoth, 1998. "Deceleration in the age pattern of mortality at olderages," Demography, Springer;Population Association of America (PAA), vol. 35(4), pages 391-412, November.
    4. Kenneth Manton & Eric Stallard & Larry Corder, 1997. "Changes in the age dependence of mortality and disability: Cohort and other determinants," Demography, Springer;Population Association of America (PAA), vol. 34(1), pages 135-157, February.
    5. James Vaupel & Kenneth Manton & Eric Stallard, 1979. "The impact of heterogeneity in individual frailty on the dynamics of mortality," Demography, Springer;Population Association of America (PAA), vol. 16(3), pages 439-454, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suryakant Yadav, 2021. "Progress of Inequality in Age at Death in India: Role of Adult Mortality," European Journal of Population, Springer;European Association for Population Studies, vol. 37(3), pages 523-550, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ting Li & Yang Yang & James Anderson, 2013. "Mortality Increase in Late-Middle and Early-Old Age: Heterogeneity in Death Processes as a New Explanation," Demography, Springer;Population Association of America (PAA), vol. 50(5), pages 1563-1591, October.
    2. Vogt, Tobias C. & Kluge, Fanny A., 2015. "Can public spending reduce mortality disparities? Findings from East Germany after reunification," The Journal of the Economics of Ageing, Elsevier, vol. 5(C), pages 7-13.
    3. Andrew Fenelon, 2013. "An examination of black/white differences in the rate of age-related mortality increase," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(17), pages 441-472.
    4. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    5. Li, Hong & Tan, Ken Seng & Tuljapurkar, Shripad & Zhu, Wenjun, 2021. "Gompertz law revisited: Forecasting mortality with a multi-factor exponential model," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 268-281.
    6. Costa, Dora L., 2003. "Understanding mid-life and older age mortality declines: evidence from Union Army veterans," Journal of Econometrics, Elsevier, vol. 112(1), pages 175-192, January.
    7. James W. Vaupel, 2009. "Lively Questions for Demographers about Death at Older Ages," Population and Development Review, The Population Council, Inc., vol. 35(2), pages 347-356, June.
    8. Ryan Masters, 2012. "Uncrossing the U.S. Black-White Mortality Crossover: The Role of Cohort Forces in Life Course Mortality Risk," Demography, Springer;Population Association of America (PAA), vol. 49(3), pages 773-796, August.
    9. Wong, Chi Heem & Tsui, Albert K, 2015. "Forecasting Life Expectancy: Evidence from a New Survival Function," CEI Working Paper Series 2015-1, Center for Economic Institutions, Institute of Economic Research, Hitotsubashi University.
    10. Michal Engelman & Vladimir Canudas‐Romo & Emily M. Agree, 2010. "The Implications of Increased Survivorship for Mortality Variation in Aging Populations," Population and Development Review, The Population Council, Inc., vol. 36(3), pages 511-539, September.
    11. Saul Justin Newman, 2018. "Errors as a primary cause of late-life mortality deceleration and plateaus," PLOS Biology, Public Library of Science, vol. 16(12), pages 1-12, December.
    12. Elizabeth Wrigley-Field, 2020. "Multidimensional Mortality Selection: Why Individual Dimensions of Frailty Don’t Act Like Frailty," Demography, Springer;Population Association of America (PAA), vol. 57(2), pages 747-777, April.
    13. Elizabeth Wrigley-Field, 2014. "Mortality Deceleration and Mortality Selection: Three Unexpected Implications of a Simple Model," Demography, Springer;Population Association of America (PAA), vol. 51(1), pages 51-71, February.
    14. Rasmus Hoffmann, 2005. "Does the socioeconomic mortality gradient interact with age? Evidence from US survey data and Danish register data," MPIDR Working Papers WP-2005-020, Max Planck Institute for Demographic Research, Rostock, Germany.
    15. Elisabetta Barbi, 2003. "Assessing the rate of ageing of the human population," MPIDR Working Papers WP-2003-008, Max Planck Institute for Demographic Research, Rostock, Germany.
    16. Hartemink, Nienke & Missov, Trifon I. & Caswell, Hal, 2017. "Stochasticity, heterogeneity, and variance in longevity in human populations," Theoretical Population Biology, Elsevier, vol. 114(C), pages 107-116.
    17. Sánchez-Romero, Miguel & Prskawetz, Alexia, 2017. "Redistributive effects of the US pension system among individuals with different life expectancy," The Journal of the Economics of Ageing, Elsevier, vol. 10(C), pages 51-74.
    18. Shripad Tuljapurkar & Ryan Edwards, 2011. "Variance in death and its implications for modeling and forecasting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 24(21), pages 497-526.
    19. Pitacco, Ermanno, 2004. "Survival models in a dynamic context: a survey," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 279-298, October.
    20. Christopher Heathcote & Tim Higgins, 2004. "Regression Modelling Of Mortality Surfaces And The Deceleration Of Mortality," Mathematical Population Studies, Taylor & Francis Journals, vol. 11(2), pages 73-91.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0050941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.